臭氧胁迫下不同光强与温度处理对‘赤霞珠’葡萄叶片PSⅡ光化学活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Light Intensity and Temperature on PSⅡ Photochemical Activity in ‘Cabernet Sauvignon' Grape Leaves Under Ozone Stress
  • 作者:耿庆伟 ; 邢浩 ; 翟衡 ; 蒋恩顺 ; 杜远鹏
  • 英文作者:GENG QingWei;XING Hao;ZHAI Heng;JIANG EnShun;DU YuanPeng;College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology;Town Government of Wucun;Shandong Institute of Pomology;
  • 关键词:葡萄 ; 臭氧 ; 光照 ; 温度 ; 叶绿素荧光参数
  • 英文关键词:grape;;ozone;;light;;temperature;;chlorophyll fluorescence parameters
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:山东农业大学园艺科学与工程学院/作物生物学国家重点实验室;曲阜市吴村镇人民政府;山东省果树研究所;
  • 出版日期:2019-04-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31572084);; 国家现代农业产业技术体系建设专项资金(CARS-29);; 长江学者和创新团队发展计划项目(IRT15R42)
  • 语种:中文;
  • 页:ZNYK201907006
  • 页数:9
  • CN:07
  • ISSN:11-1328/S
  • 分类号:70-78
摘要
【目的】自然界中臭氧与强光和高温逆境因素往往同时存在,探讨光强和温度及臭氧的交叉胁迫对葡萄叶片光系统功能的伤害机制,为生产上通过调控光照、温度缓解臭氧对葡萄的危害提供理论依据。【方法】以盆栽‘赤霞珠’葡萄为试验材料,利用叶绿素荧光动力学技术,研究(120±20)nL·L~(-1)的臭氧浓度下,不同光强(800、1 600μmol·m~(-2)·s~(-1))与温度(26℃、40℃)处理对光系统Ⅱ光化学活性的影响。【结果】臭氧胁迫下40℃的高温和1 600μmol·m~(-2)·s~(-1)的强光均可以显著降低叶片最大光化学效率(F_v/F_m)、线性电子传递速率(ETR)、单位面积有活性反应中心的数量(RC/CS_m)以及光化学淬灭系数(q_P),同时降低了光系统I激发能分配系数(α),增大了光系统Ⅱ激发能分配系数(β),导致两个光系统之间的激发能分配严重偏离平衡,造成了光系统Ⅱ的伤害,1 600μmol·m~(-2)·s~(-1)的强光影响大于40℃的高温影响,强光、高温与臭氧复合胁迫对葡萄叶片影响最为严重。其中臭氧、适光、高温(T2)和臭氧、强光、适温(T3)处理后的叶片PSⅡ最大光化学量子产量F_v/F_m值分别比臭氧、适光、适温处理(T1)降低了10.3%和38.8%,臭氧、强光、高温(T4)处理后F_v/F_m降幅最大,达到54.8%。T2、T3和T4处理后叶片PSⅡ的潜在活性F_v/Fo分别比T1降低了30.4%、69.6%和80.3%。与T1相比,T2、T3和T4处理后的叶片单位面积内有活性反应中心的数量RC/CS_m值分别降低了26.8%、68.4%和70.2%,T2、T3和T4处理后的叶片Ψo值分别比T1降低了11.2%、21.6%、40.8%。T2、T3及T4处理葡萄叶片实际光化学效率F_v'/F_m'值分别比T1降低了7.9%、22.1%和42.3%;同时,各处理显著降低了植物叶片线性电子传递速率ETR,T4处理降幅最大,比T1降低了62.5%,T2和T3处理分别降低了17.6%和37.5%。T2、T3和T4的叶片光化学淬灭q_P值分别比T1降低了10.7%和19.8%和39.5%。T2、T3和T4处理后葡萄叶片吸收的光能用于光化学反应的比例均有所下降,分别比T1处理降低18.8%和38.8%和62.0%。与T1相比,T2、T3和T4处理吸收的光能用于热耗散的比例均增加,增幅分别为15.9%、36.2%和60.5%,同时,过剩光能分别增加12.5%、19.1%和25.2%。不同处理显著降低了叶片PSI激发能分配系数(α),与T1相比,T2、T3和T4分别下降了6.6%和12.8%和25.1%;同时,不同处理后叶片PSⅡ激发能分配系数(β)均显著上升,T2、T3、T4分别比T1升高了4.5%、8.7%、17.1%。光系统间激发能分配不平衡偏离系数(β/α–1)变化趋势与PSⅡ激发能分配系数一致,T2、T3处理的β/α–1分别比T1升高37.7%和78.3%,T4升高幅度最大,达到187.8%。【结论】温度、光照逆境增加了PSⅡ活性对臭氧胁迫的敏感性,以强光胁迫的作用效果更显著,而高温、强光胁迫下臭氧对PSⅡ活性抑制程度最大。
        【Objective】Ozone stress, high light and high temperature usually exist simultaneously in nature, but little is known about the effect of the combination of three stress factors on plants. So the combined effects of different temperature(26, 40℃), light(800, 1 600 μmol·m~(-2)·s~(-1)) and ozone treatments on the operation of photosynthetic apparatus were investigated to reveal the mechanism of inhibition of photosynthesis, which provided a theoretical basis for reducing ozone injury by regulating the light and temperature. 【Method】 Potted Cabernet Sauvignon grapes were used as materials to be treated with different temperatures(26,40℃), two kinds of light intensities(800, 1 600 μmol·m~(-2)·s~(-1)) combined with(120±20) nL·L~(-1) ozone. Chlorophyll a fluorescence parameters were analyzed to investigate the effects of different treatments on the PSⅡ function. 【Result】 40℃ and 1 600μmol·m~(-2)·s~(-1) both significantly decreased the maximal photochemical efficiency(F_v/F_m), linear electron transport rate(ETR), the unit area number of reactive centers(RC/CS_m) and photochemical quenching coefficient(q_P) of leaf under ozone stress. At the same time,the decreased excitation energy partition coefficient(α) of PSI and increased excitation energy partition coefficient(β) of PSⅡ induced a serious imbalance of excitation energy distribution between the two photosystems and caused the damage of photosystem Ⅱ, and the influence of strong light intensity(1 600 μmol·m~(-2)·s~(-1)) was more significant. The maximal photochemical efficiency(F_v/F_m)under T2 and T3 treatment decreased 10.3% and 38.8% than that under T1 treatment, F_v/F_m under T4 treatment decreased most for54.8%. PSⅡ quantum efficiency F_v/Fo under T2, T3 and T4 treatment decreased 30.4%, 69.6% and 80.3% than that of T1 treatment,respectively. The number of reaction centers per unit area(RC/CS_m) under T2, T3 and T4 treatment decreased 30.4%, 69.6% and80.3% than that of T1 treatment, respectively, and the probability of that a trapped exciton the moves an electron further than QA by trapped exciton(Ψo) under T2, T3 and T4 treatment decreased 11.2%, 21.6% and 40.8% than that of T1 treatment, respectively. The effective photochemical efficiency F_v'/F_m' under T2, T3 and T4 treatment decreased 7.9%, 22.1% and 42.3% than that under T1 treatment, respectively. Linear electron transport rate(ETR) of T4 decreased most(decreased 62.5% than that under T1 treatment),and ETR under T2 and T3 treatment decreased 17.6% and 37.5% than that of T1 treatment, respectively. The photochemical quenching coefficient(q_P) under T2, T3 and T4 treatment decreased 10.7%, 19.8% and 39.5% than that of T1 treatment, respectively.The photochemical reactions share under T2, T3 and T4 treatment decreased 18.8%, 38.8% and 62.0% than that of T1 treatment,respectively. While the antennal heat dissipation share under T2, T3 and T4 treatment increased 15.9%, 36.2% and 60.5% than that of T1 treatment, respectively, and the excess light energy share of T2, T3 and T4 treatment increased 12.5%, 19.1% and 25.2% than that of T1 treatment, respectively, the excitation energy partition coefficient(α) of PSI under T2, T3 and T4 treatment decreased 6.6%,12.8% and 25.1% than that under T1 treatment, respectively, and the excitation energy partition coefficient(β) of PSⅡ under T2, T3 and T4 treatment increased 4.5%, 8.7% and 17.1% than that under T1 treatment, respectively, and the change trend of imbalance of partitioning of excitation energy between PSⅠand PSⅡ(β/α-1) was consistent with the change of the excitation energy partition coefficient, β/α-1 under T2, T3 and T4 increased 37.7%, 78.3% and 187.8% than that under T1 treatment.【Conclusion】Temperature and light stress increased the sensitivity of PSⅡ activity to ozone stress, and the influence of light stress was more significant, while high temperature and high light stress caused serious damage to photosystem Ⅱ.
引文
[1]ASHMORE M R.Assessing the future global impacts of ozone on vegetation.Plant,Cell&Environment,2005,28(8):949-964.
    [2]张巍巍,牛俊峰,王效科,田媛,姚芳芳,冯兆忠.大气臭氧浓度增加对湿地松的影响.环境科学,2011,32(6):1710-1716.ZHANG W W,NIU J F,WANG X K,TIAN Y,YAO F F,FENG Z Z.Effects of elevated ozone concentration on slash pine(Pinus elliottii)seedlings.Enbironmental Science,2011,32(6):1710-1716.(in Chinese)
    [3]郑有飞,胡程达,吴荣军,赵泽,刘宏举,石春红.地表臭氧浓度增加对冬小麦光合作用的影响.生态学报,2010,30(4):847-855.ZHENG Y F,HU C D,WU R J,ZHAO Z,LIU H J,SHI C H.Experiment with effects of increased surface ozone concentration upon winter wheat photosynthesis.Acta Ecologica Sinica,2010,30(4):847-855.(in Chinese)
    [4]FENG Z Z,HU E Z,WANG X K,JIANG L J,LIU X J.Ground level O3 pollution and its impacts on food crops in China:A review.Environmental Pollution,2015,199:42-48.
    [5]LEIPNER J,OXBOROUGH K,BAKER N R.Primary sites of ozone-in-duced perturbations of photosynthesis in leaves:Identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging.Journal of Experimental Botany,2001,52:1689-1696.
    [6]CHEN C P,FRANK T D,LONG S P.Is a short,sharp shock equivalent to long-term punishment?Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging.Plant Cell Environment,2009,32:327-335.
    [7]孙永江,王金欢,耿庆伟,邢浩,翟衡,杜远鹏.不同浓度臭氧处理对‘赤霞珠’葡萄叶片光系统Ⅱ功能的影响.植物生理学报,2015,51(11):1947-1954.SUN Y J,WANG J H,GENG Q W,XING H,ZHAI H,DU Y P.Effects of different concentrations of ozone stress on photosynthetic system II in Vitis vinifera cv.‘Cabernet Sauvignon’.Plant Physiology Journal,2015,51(11):1947-1954.(in Chinese)
    [8]郑有飞,赵泽,吴荣军,胡程达,刘宏举.臭氧胁迫对冬小麦叶绿素荧光及气体交换的影响.环境科学,2010,31(2):472-479.ZHENG Y F,ZHAO Z,WU R J,HU C D,LIU H J.Effects of long-term ozone exposure on chlorophylla fluorescence and gas exchange of winter-wheat leaves.Enbironmental Science,2010,31(2):472-479.(in Chinese)
    [9]寇太记,常会庆,张联合,徐晓峰,郭大勇,周文利,朱建国,苗艳芳.近地层O3污染对陆地生态系统的影响.生态环境学报,2009,18(2):704-710.KOU T J,CHANG H Q,ZHANG L H,XU X F,GUO D Y,ZHOU WL,ZHU J G,MIAO Y F.Effect of near-surface O3 pollution on terrestrial ecosystems.Ecology and Environmental Sciences,2009,18(2):704-710.(in Chinese)
    [10]FOYER C H,NOCTOR G.Oxidant and antioxidant signaling in plants:A re-evaluation of the concept of oxidative stress in a physiological context.Plant Cell Environment,28:1056-1071.
    [11]POSPí?IL P.Production of reactive oxygen species by photosystem II.Biochimica et Biophysica Acta(BBA)-Bioenergetics,2009,1787(10):1151-1160.
    [12]TYYSTJARVI E.Photoinhibition of photosystem II.International Review of Cell and Molecular Biology,2013,300:243-303.
    [13]罗海波,马苓,段伟,李绍华,王利军.高温胁迫对‘赤霞珠’葡萄光合作用的影响.中国农业科学.2010,43(13):2744-2750.LUO H B,MA L,DUAN W,LI S H,WANG L J.Influence of heat stress on photosynthesis in Vitis vinifera L.cv.Cabernet Sauvignon.Scientia Agricultura Sinica,2010,43(13):2744-2750.(in Chinese)
    [14]孙永江,付艳东,杜远鹏,翟衡.不同温度/光照组合对‘赤霞珠’葡萄叶片光系统II功能的影响.中国农业科学,2013,46(6):1191-1200.SUN Y J,FU Y D,DU Y P,ZHAI H.Effects of different temperature and light treatments on photosynthetic system II in Vitis vinifera L.cv.Cabernet Sauvignon.Scientia Agricultura Sinica,2013,46(6):1191-1200.(in Chinese)
    [15]SUN Y J,GENG Q W,DU Y P,YANG X H,ZHAI H.Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.Plant Science,2017,256:65-71.
    [16]SUN Y J,GAO Y L,WANG H,YANG X H,ZHAI H,DU Y P.Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves.Functional Plant Biology,2018,45(10):1038-1045.
    [17]孙永江,王金欢,耿庆伟,邢浩,翟衡,杜远鹏.不同浓度臭氧处理对‘赤霞珠’葡萄叶片光系统Ⅱ功能的影响.植物生理学报,2015,51(11):1947-1954.SUN Y J,WANG J H,GENG Q W,XING H,ZHAI H,DU Y P.Effects of different concentrations of ozone stress on photosynthetic system II in Vitis vinifera cv.‘Cabernet Sauvignon’.Plant Physiology Journal,2015,51(11):1947-1954.(in Chinese)
    [18]BRAUN G,MALKIN S.Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrane.Biochimica et Biophysica Acta(BBA)-Biomembranes,1990,1017(1):79-90.
    [19]DEMMIG-ADAMS B,ADAMS W W.The role of xanthophyll cycle carotenoids in the protection of photosynthesis.Trends in Plant science,1996,1(1):21-26.
    [20]李鹏民,高辉远,Strasser Reto J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报,2005,31(6):559-566.LI P M,GAO H Y,STRASSER R J.Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study.Journal of Plant Physiology and Molecular Biology,2005,31(6):559-566.(in Chinese)
    [21]OSMOND C B.What is photoinhibition?some insights from comparisons of shade and sun plants.Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field,1994.
    [22]莫伟平,周琳耀,张静逸,黄俊波,贝学文,付欣雨,王惠聪,黄旭明.遮荫和环剥对荔枝枝梢生长和光合生理的影响.园艺学报,2013,40(1):117-124.MO W P,ZHOU L Y,ZHANG J Y,HUANG J B,BEI X W,FU X Y,WANG H C,HUANG X M.Effects of shading and girdling on shoot growth and photosynthesis in litchi.Acta Horticulturae Sinica,2013,40(1):117-124.(in Chinese)
    [23]李亮,董春娟,尚庆茂.内源水杨酸参与黄瓜叶片光合系统对低温胁迫的响应.园艺学报,2013,40(3):487-497.LI L,DONG C J,SHANG Q M.Role of endogenous salicylic acid in responding of cucumber leaf photosynthetic systems to low temperature stress.Acta Horticulturae Sinica,2013,40(3):487-497.(in Chinese)
    [24]MUNEKAGE Y,HASHIMOTO M,MIYAKE C,TOMIZAWA K I,ENDO T,TASAKA M,SHIKANAI T.Cyclic electron flow around photosystem I is essential for photosynthesis.Nature,2004,429:579-582.
    [25]MOHANTY P,ALLAKHVERDIEV S I,MURATA N.Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II.Photosynthesis Research,2007,94(2/3):217-224.
    [26]SCHRADER S M,WISE R R,WACHOLTZ W F,ORT D R,SHARKEY T D.Thylakoid membrane responses to moderately high leaf temperature in Pima cotton.Plant Cell&Environment,2004,27(6):725-735.
    [27]MITTLER R.Abiotic stress,the field environment and stress combination.Trends in Plant Science,2006,11(1):15-19.
    [28]MEYER U,KOLLNER B,WILLENBRINK J,GHM K.Effects of different ozone exposure regimes on photosynthesis,assimilates and thousand grain weight in spring wheat.Agriculture Ecosystems&Environment,2000,78(1):49-55.
    [29]GUIDI L,TONINI M,SOLDATINI G F.Effects of high light and ozone fumigation on photosynthesis in Phaseolus vulgaris.Plant Physiology&Biochemistry,2000,38(9):717-725.
    [30]GENG Q W,XING H,SUN Y J,HAO G M,ZHAI H,DU Y P.Analysis of the interaction effects of light and O3 on fluorescence properties of‘Cabernet Sauvignon’grapes based on response surface methodology.Scientia Horticulturae,2018,227:255-260.
    [31]WISE R R,OLSON A J,SCHRADER S M,SHARKEY T D.Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature.Plant Cell&Environment,2004,27(6):717-724.
    [32]CHAITANYA K V,SUNDAR D,REDDY A R.Mulberry leaf metabolism under high temperature stress.Biologia Plantarum,2001,44(3):379-384.
    [33]HOSONO M,KATSURA Y.Temperature response of photosynthesis in transgenic rice transformed with‘sense’or‘antisense’rbcS.Plant&Cell Physiology,2007,48(10):1472-1483.
    [34]成果,陈立业,王军,陈武,张振文.2种整形方式对‘赤霞珠’葡萄光合特性及果实品质的影响.果树学报,2015,32(2):215-224.CHENG G,CHEN L Y,WANG J,CHEN W,ZHANG Z W.Effect of training system on photosynthesis and fruit characteristics of Cabernet Sauvignon.Journal of Fruit Science,2015,32(2):215-224.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700