薄壁微喷带沿程水头损失试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Water Head Loss Along Thin-wall Spray-irrigation Pipe
  • 作者:苟万里 ; 杨路华 ; 邸志刚 ; 王金毅
  • 英文作者:GOU Wanli;YANG Luhua;DI Zhigang;WANG Jinyi;College of Water Conservancy Engineering,Tianjin Agricultural University;Tianjin Agricultural Water Conservancy Technology Engineering Center;
  • 关键词:薄壁微喷带 ; 沿程水头损失 ; 水头损失参数 ; 阻力系数
  • 英文关键词:thin-wall micro spray-irrigation pipe;;water head loss;;water head loss parameter;;frictional resistance coefficient
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:天津农学院水利工程学院;天津市农业水利技术工程中心;
  • 出版日期:2019-05-15
  • 出版单位:灌溉排水学报
  • 年:2019
  • 期:v.38
  • 基金:水利部海河水利委员会项目(TNHP2018001)
  • 语种:中文;
  • 页:GGPS201905012
  • 页数:5
  • CN:05
  • ISSN:41-1337/S
  • 分类号:81-85
摘要
【目的】研究薄壁型微喷带沿程水头损失的水力性能。【方法】采用控制变量法与L9(34)正交试验方案,对折径为N43、N45、N50、N64 mm的微喷带进行沿程水头损失水力性能试验,获取流量、长度、折径与水头损失等试验数据,分析流量、长度、折径三因素对沿程水头损失的影响程度以及水头损失相关水力性能参数,提出了沿程阻力系数,对沿程水头损失计算公式参数进行修改,得出了薄壁型微喷带水头损失计算参数。【结果】薄壁型微喷带沿程水头损失随着压力与铺设长度的增大而增大;折径、流量、长度的F值分别为90.314、26.056、19.041,表明对沿程水头损失影响依次减小。【结论】采用修改后的沿程水头损失计算参数计算薄壁型微喷带沿程水头损失值与试验值吻合较好。
        【Objective】Energy loss is an important parameter in designing pipe network, and this paper experimentally studied water head loss in thin-wall spray-irrigation pipes.【Method】The control variable method and L9(34) orthogonal test were used to examine water head loss along thin-wall spray-irrigation pipes with diameter of N43 mm, N45 mm, N50 mm and N64 mm respectively. The flow rate and water head loss in each experiment were measured, from which we analyzed the impact flow rate, length and diameter of the pipe on water head loss.We then proposed a frictional resistance coefficient, modified the formula for water head loss, and applied it to the thin wall spray-irrigation pipe.【Result】The water head loss increased with operating pressure and the length of the pipe. The associated F value for impact of the pipe diameter, flow rate and the pipe length on water head loss was 90.314, 26.056 and 19.041 respectively, indicating that water head loss was most affected by pipe diameter and least by pipe length with flow rate between.【Conclusion】The modified formula for calculating water head loss was consistent with experimental data.
引文
[1]窦超银,于国丰,王海兵.压片式微喷带水力特性试验研究[J].节水灌溉, 2012(5):29-32.
    [2]郑迎春,杨路华,翟宁,等.喷孔为节点式微喷带的水力特性初步研究[J].河北农业大学学报, 2009, 32(2):106-110.
    [3]张学军,吴政文,沈雪民.多孔式微喷带的研究与应用[J].节水灌溉, 2000(3):32-35.
    [4]李敬库.微喷带灌溉技术研究及应用进展[J].东北水利水电, 2017,35(1):53-56.
    [5]许金金,张治平,刘浩,等.长度和水压对微喷带沿程水肥均匀性的影响[J].灌溉排水学报, 2015, 34(10):30-36.
    [6]张硕,王文娥,胡笑涛.压力对微喷带水量分布的影响研究[J].节水灌溉, 2017(6):11-15.
    [7]张泽中,王盈盈,齐青青.多孔膜袋灌水利性能分析[J].灌溉排水学报, 2016,7(35):85-91.
    [8]丁法轮,王文娥,胡笑涛,等.滴灌管水头损失影响因素试验研究[J].灌溉排水学报, 2016,10(35):13-18.
    [9] KENJI SHIINA. New Irrigation System Using Pressure Hoses[J]. Elsevierjournal,2011, 4(7):50-55.
    [10] OKER T E, ISAYA K, SHESHUKOV A Y, et al. Evaluation of maize production under mobile drip irrigation[J]. Agricultural Water Management, 2018,210:11-21.
    [11] VIDANA GAMAGEA D N, BISWASB A, STRACHANA I B. Actively heated fiber optics method to monitor three-dimensional wetting patterns under drip irrigation[J]. Agricultural Water Management, 2018, 210:243-251.
    [12]陈际旭,徐淑琴,周豪,等.基于萤火虫算法的滴灌管网优化设计研究[J].灌溉排水学报, 2018, 37(9):48-55.
    [13]微灌工程技术规范:GBT 50485—2009[S].北京:中国水利水电出版社, 2009.
    [14]王金如.多孔口管道水力计算中多口系数和摩损比的计算方法[J].喷灌技术, 1991(4):31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700