氯胺消毒对臭氧活性炭出水水质生物稳定性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Chloramine Disinfection on Effluent Biological Stability of Ozone-Activated Carbon
  • 作者:周文颖 ; 李伟英 ; 陈俊宇 ; 朱虹 ; 钱林 ; 徐庶伟 ; 吴健
  • 英文作者:ZHOU Wenying;LI Weiying;CHEN Junyu;ZHU Hong;QIAN Lin;XU Shuwei;WU Jian;College of Environmental Science and Engineering,Tongji University;Shanghai Municipal Engineering Design Insitute Co.,Ltd.;Wujiang Hongkong China Water Co.,Ltd.;YuHong Nano Technology Shanghai Co.,Ltd.;
  • 关键词:臭氧活性炭出水 ; 氯胺消毒 ; 生物稳定性 ; 可同化有机碳 ; CT值
  • 英文关键词:effluent of ozone activated carbon;;chloramine disinfection;;biological stability;;AOC;;CT value
  • 中文刊名:ZSJS
  • 英文刊名:Water Purification Technology
  • 机构:同济大学环境科学与工程学院;上海市政工程设计研究总院〈集团〉有限公司;吴江华衍水务有限公司;禹泓冠品环保科技〈上海〉有限公司;
  • 出版日期:2019-01-24 11:54
  • 出版单位:净水技术
  • 年:2019
  • 期:v.38;No.201
  • 基金:吴江华衍水务活性炭柱设计及运行参数优化技术研究(20163220);; 新型消毒剂(VD~+)和清洁剂(VD~-)在水处理系统中的应用(kh0040020173806)
  • 语种:中文;
  • 页:ZSJS201901006
  • 页数:7
  • CN:01
  • ISSN:31-1513/TQ
  • 分类号:20-26
摘要
以太湖流域某水厂常规工艺和深度处理工艺(臭氧活性炭,O_3-BAC)出水为研究对象,以可同化有机碳(AOC)为生物稳定性评判指标,对比研究了常规工艺与深度处理工艺出水在氯胺消毒过程中生物稳定性的变化特征。试验结果表明,尽管臭氧活性炭工艺提高了出水的浊度和耗氧量等常规水质指标的去除率,但出水在氯胺消毒后水质的生物安全性降低。当接触时间为120 min时,氯氮比为5:1和3:1的氯胺消毒后,水中细菌灭活率分别为3.26 lg和2.90 lg,AOC分别为94.87μg/L和107.31μg/L,表明采用高氯氮比(5:1)的氯胺消毒后水质生物稳定性优于使用低氯氮比的氯胺(3:1)。氯胺(5:1)消毒时当氯胺投加量为0.50 mg/L、CT值为90 mg·min·L~(-1)时,出水生物稳定性最佳。
        The objects of the study were the effluents of conventional treatment process and advanced treatment process(O_3-BAC) of a water plant in Taihu Lake basin.Based on biological stability index( assimilable organic carbon, AOC), characteristics of biological stability of the effluents during chloramine disinfection were compared.The results indicated that biological stability decreased though the removal of turbidity and COD_(Mn) increased when advanced treatment process was applied.A chloramine disinfection test with chlorine to nitrogen ratio of 5:1 and 3 :1 was carried out under the condition that the contact time was 120 min.The inactivation rate of bacteria in water was 3.26 lg and 2.90 lg,respectively, and the AOC was 94.87 μg/L and 107.31 μg/L(CT=360 mg·min·L~(-1)),indicating that bio-stability of the water after disinfection with chloramine of higher chlorine to nitrogen ratio(5:1) was better.When chloramine of higher chlorine to nitrogen ratio(5:1) was adopted for disinfection, effluent biological stability was the best when chloramine dosage was 0.50 mg/L and CT value was 90 mg·min·L~(-1).
引文
[1] CHIU J M Y, PO B H K, DEGGER N, et al. Contamination and risk implications of endocrine disrupting chemicals along the coastline of China:A systematic study using mussels and semipermeable membrane devices[J]. Science of the Total Environment,2018, 47(9):1298-1307.
    [2] PERIASAMY S, JOO H S, DUONG A C, et al. How staphylococcus aureus biofilms develop their characteristic structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4):1281-1286.
    [3]张雪,张璐,华伟.臭氧-活性炭深度处理工艺对微污染水中有机物的去除特性[J].给水排水,2012,42(s1):66-68.
    [4] LIAO X B, ZHANG X J, WANG J, et al. Application of conventional and 03-BAC processes to treat organic matter and antibiotic pollutants in a lake in East China[J]. Water Science&Technology Water Supply, 2013, 13(6):1470-1477.
    [5] LOU J C, LIN C Y, HAN J Y, et al. Comparing removal of trace organic compounds and assimilable organic carbon(AOC)at advanced and traditional water treatment plants[J]. Environmental Monitoring and Assessment, 2012, 184(6):3491-3501.
    [6]华伟,张雪,张骏鹏,等.净水厂常规与深度处理工艺对饮用水生物稳定性控制研究[J].给水排水,2016, 42(1):7-12.
    [7]李晓玲,刘锐,兰亚琼,等.J市饮用水氯消毒副产物分析及其健康风险评价[J].环境科学,2013, 34(9):3474-3479.
    [8]耿冰,张晓,宋海亮,等.联合消毒技术对饮用水生物稳定性的影响研究[J].净水技术,2017,36(s1):25-27.
    [9]刘文君,王亚娟,张丽萍,等.饮用水中可同化有机碳(AOC)的测定方法研究[J].给水排水,2000, 26(11):1-5.
    [10] KOOIJ D V D, VISSER A, HIJNEN W A M. Determining the concentration of easily assimilable organic carbon in drinking water[J]. Journal American Water Works Association, 1982, 74(10):540-550.
    [11] ZHANG J, LI W Y, WANG F, et al. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods[J]. Chemosphere, 2016,161:43-52.
    [12] FERREIRA FILHO S S. Water treatment:Principles and design[J]. Engenharia Sanitaria E Ambiental, 2005, 10(3):184.
    [13]郭利霞.氯胺消毒时不同氯氮比对水质生物稳定性的影响研究[J].黑龙江科技信息,2013(15):81-82.
    [14] WEN G, ZHU H, WEI Y D, et al. Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide[J]. Chemical Engineering Journal,2017, 22(1):364-371.
    [15]王继萍,华伟,蒋福春,等.臭氧-生物活性炭工艺去除AOC和有机物的效果研究[J].给水排水,2014, 40(2):11-15.
    [16] LIAO X B, ZOU R S, CHEN C, et al. Evaluating the biosafety of conventional and 0-3-BAC process and its relationship with NOM characteristics[J]. Environmental Technology, 2018, 39(2):221-230.
    [17] SUN X, YUAN T, NI H, et al. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions[J]. Joural of Environmental Science, 2016, 45(7):16.
    [18] RAMSEIER M K, PETER A, TRABER J, et al. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate[J].Water Research, 2011, 45(5):2002-2010.
    [19]丛逸,赵欣,胡洪营,等.氯消毒对再生水可同化有机碳的影响[J].环境科学学报,2017, 37(7):2602-2608.
    [20]纪荣平,吕锡武.饮用水BDOC、AOC处理技术研究进展[J].净水技术,2004, 23(1):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700