污泥厌氧消化反应器CFD数值模拟研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge
  • 作者:曹秀芹 ; 徐国庆 ; 袁海光 ; 江坤 ; 仇付国 ; 尹伟齐 ; 付昆明
  • 英文作者:CAO Xiuqin;XU Guoqing;YUAN Haiguang;JIANG Kun;QIU Fuguo;YIN Weiqi;FU Kunming;Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture;National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture;Henan Provincial Communications Planning Survey & Design Institute Co.Ltd.;
  • 关键词:CFD模拟 ; 流变特性 ; 模型选取 ; 流场-生化耦合模型 ; 厌氧消化反应器 ; 污泥
  • 英文关键词:CFD simulation;;rheological characteristics;;model selection;;flow field-biochemical reaction coupling model;;anaerobic digester;;sewage sludge
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室;北京建筑大学水环境国家级实验教学示范中心;河南省交通规划设计研究院股份有限公司;
  • 出版日期:2018-11-05
  • 出版单位:环境工程学报
  • 年:2018
  • 期:v.12
  • 基金:北京市教委(北京市自然科学基金)科技重点项目(KZ201310016017);; 北京建筑大学市属高校基本科研业务费专项资金资助(X18182)
  • 语种:中文;
  • 页:HJJZ201811005
  • 页数:15
  • CN:11
  • ISSN:11-5591/X
  • 分类号:9-23
摘要
污泥作为典型的不透明非牛顿流体,在厌氧消化反应器内的流场具有复杂性,难以直接进行流场测试分析。结合计算流体力学(CFD)技术,分析污泥厌氧消化反应器内的流场分布情况,探讨污泥在反应器内混合效果和对消化过程的影响,以验证校核反应器优化设计和运行,改善污泥在消化反应器内的流动和混合性能并最终提高反应器性能。在综合文献及前期研究工作的基础上,系统分析并重点关注了CFD数值模拟过程当中多相流模型和湍流模型的选取、污泥流变特性应用、反应器流场评估优化及耦合生化模型等的研究现状及进展,总结了目前污泥厌氧消化反应器CFD数值模拟过程存在的问题。并指出在考量污泥流变学特性的基础上,利用传质模型将反应器流场和生化过程相耦合,构建流场-生化耦合模型,获取基质转化规律,为优化污泥厌氧消化反应器设计运行提供理论依据,是CFD应用于厌氧消化反应器数值模拟的发展方向。
        As an opaque and typical non-Newton fluid, sewage sludge performs a complex rheological behavior,and a complex flow field distribution will occur in an anaerobic digester, which is difficult to test directly. In this study, the visualization of flow field was analyzed with combination of computational fluid dynamics(CFD), then the mixing effect of sludge in an anaerobic digester and its influence on digestion process were investigated, which could verify the optimal design and operation of the digester, and ameliorate the flow and mixing characteristics of sewage sludge. Ultimately, the performance of the digester could be improved. Based on previous research works and extensive literatures, the research status and advances on the selection of multiphase flow models and turbulence models, application of rheological characteristics, evaluation and optimization of the flow field as well as coupledbiochemical models in CFD numerical simulation were systemically analyzed and focused on. The review concluded that based on the considering the sludge rheological property, the mass transport model was used to couple the flow field of reactor and biochemical process, then the flow field-biochemical reaction coupling model was built, and the substrate transformation was achieved, which could provide a theoretical basis for optimizing the design and operation of sewage sludge anaerobic digester, and is a development trend for numerical simulation of an anaerobic digester with CFD.
引文
[1]曹秀芹,赵振东,杨平,等.污泥厌氧消化反应器搅拌性能的CFD模拟[J].给水排水,2016,42(3):137-141.
    [2] XU W. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation[J].International Journal of Hydrogen Energy,2010,35(20):10960-10966. DOI:10.1016/j.ijhydene.2010.07.060.
    [3] WU B X. Advances in the use of CFD to characterize design and optimize bioenergy systems[J]. Computers and Electronics in Agriculture,2013,92(3):195-208. DOI:10.1016/j.compag.2012.05.008.
    [4] WU B X. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research,2010,44(5):1507-1519. DOI:10.1016/j.watres.2009.10.040.
    [5] METZNER A B, REED J C. Flow of non-Newtonian fluids correlation of laminar transition and turbulent-flow regions[J]. AIChE Journal,1955,1(4):434-440. DOI:10.1002/aic.690010409.
    [6] TERASHIMA M, GOEL R, KOMATSU K, et al. CFD simulation of mixing in anaerobic digesters[J]. Bioresource Technology,2009,100(7):2228-2233. DOI:10.1016/j.biortech.2008.07.069.
    [7] YU L, MA J, CHEN S. Numerical simulation of mechanical mixing in high solid anaerobic digester[J]. Bioresource Technology,2011,102(2):1012-1018. DOI:10.1016/j.biortech.2010.09.079.
    [8] WU B. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters[J]. Water Research,2011,45(5):2082-2094. DOI:10.1016/j.watres.2010.12.020.
    [9] TOM B, BECHTEL P E. Laminar pipeline flow of wastewater sludge:Computational fluid dynamics approach[J]. Journal of Hydraulic Engineering,2003,129(2):153-158. DOI:10.1061/(ASCE)0733-9429(2003)129:2(153).
    [10] L′OPEZ-JIM′ENEZA P A, ESCUDERO-GONZ′ALEZA J, MART′INEZC T M, et al. Application of CFD methods to an anaerobic digester:The case of Ontinyent WWTP, Valencia, Spain[J]. Journal of Water Process Engineering,2015,7:131-140. DOI:10.1016/j.jwpe2015.05.006.
    [11]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:136-137.
    [12] COUGHTRIE A R, BORMAN D J, SLEIGH P A. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester[J]. Bioresource Technology,2013,1138(2):297-306. DOI:10.1016/j.biortech.2013.03.162.
    [13] WU B X. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters[J]. Water Research,2010,44(13):3861-3874. DOI:10.1016/j.watres.2010.04.043.
    [14] WU B X. Computational fluid dynamics investigation of turbulence models for non-Newtonian fluid flow in anaerobic digesters[J].Environmental Science and Technology,2010,44(23):8989-8995. DOI:10.1021/es1010016.
    [15] WU B X. Large eddy simulation of mechanical mixing in anaerobic digesters[J]. Biotechnology&Bioengineering,2012,109:804-812. DOI:10.1002/bit.24345.
    [16] YU L, MA J W, FREAR C, et al. Multiphase modeling of settling and suspension in anaerobic digester[J]. Applied Energy,2013,111:28-39. DOI:10.1016/j.apenergy.2013.04.073.
    [17] KARIM K, THOMA G J, ALDAHHAN M H. Gas-lift digester configuration effects on mixing effectiveness[J]. Water Research,2007,41:3051-3060. DOI:10.1016/j.watres.2007.03.042.
    [18] KARIM K, VARMA R, VESVIKAR M. et al. Flow pattern visualization of a simulated digester[J]. Water Research,2004,38:3659-3670. DOI:10.1016/j.watres.2004.06.009.
    [19] KARIM K, THOMA G J, ALDAHHAN M H. Gas-lift digester configuration effects on mixing effectiveness[J]. Water Research,2007,41:3051-3060. DOI:10.1016/j.watres.2007.03.042.
    [20] ZHANG Y, YU G R, YU L, et al. Computational fluid dynamics study on mixing mode and power consumption in anaerobic monoand co-digestion[J]. Bioresource Technology,2016,203:166-172. DOI:10.1016/j.biortech.2015.12.023.
    [21]宋金礼,陈贵军,王娟.发酵罐内固液两相流的数值模拟[J].节能,2015,34(5):22-25.
    [22] VESVIKAR M S, ALDAHHAN M H. Effect of scale on hydrodynamics of internal gas-lift loop reactor-type anaerobic digester using CFD[J]. Chemical Product and Process Modeling,2015,10(3):179-192. DOI:10.1515/cppm-2015-0009.
    [23] WU B X. CFD simulation of gas mixing in anaerobic digesters[J]. Computers&Electronics in Agriculture,2014,109:278-286.DOI:10.1016/j.compag.2014.10.007.
    [24] SOUSA LIMA M G, DE LIMA A G B, BRITO NUNES F C. Theoretical/experimental study of an upflow anaerobic sludge blanket reactor treating domestic wastewater[J]. International Journal of Chemical Reactor Engineering,2011,9(1):1542-6580. DOI:10.1515/1542-6580.2599.
    [25] WANG X, DING J, GUO W Q, et al. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation[J]. Bioresource Technology,2010,101(24):9749-9757. DOI:10.1016/j.biortech.2010.07.115.
    [26] MURTHY B N, GHADGE R S, JOSHI J B. CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science,2007,62(24):7184-7195. DOI:10.1016/j.ces.2007.07.005.
    [27] VESVIKAR M S, ALDAHHAN M H. Flow pattern visualization in a mimic anaerobic digester using CFD[J]. Biotechnology and Bioengineering,2005,89:719-732. DOI:10.1002/bit.20388.
    [28] MERONEY R N, COLORADO P E. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks[J]. Water Research,2009,43(4):1040-1050. DOI:10.1016/j.watres.2008.11.035.
    [29] WU B X. CFD analysis of mechanical mixing in anaerobic digesters[J]. Transactions of the ASABE,2009,52(4):1371-1382. DOI:10.13031/2013.27786.
    [30] WU B X. CFD prediction of mixing time in anaerobic digesters[J]. Transactions of the ASABE,2010,53(2):553-563. DOI:10.13031/2013.29570.
    [31] MENDOZAL A M, MARTINEZ T M, MONTANANA V F, et al. Modeling flow inside an anaerobic digester by CFD techniques[J].International Journal of Energy and Environmental,2011,2(6):963-974.
    [32] WU B X, CHEN Z B. An integrated physical and biological model for anaerobic lagoons[J]. Bioresource Technology,2011,102:5032-5038. DOI:10.1016/j.biortech.2011.01.076.
    [33] BRIDGEMAN J. Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester[J]. Advances in Engineering Software,2012,44(1):54-62. DOI:10.1016/j.advengsoft.2011.05.037.
    [34] SINDALL R, BRIDGEMAN J, CARLIELL M C. Velocity gradient as a tool to characterise the link between mixing and biogas production in anaerobic waste digesters[J]. Water Science&Technology,2013,67(12):2800-2806. DOI:10.2166/wst.2013.206.
    [35]曹秀芹,赵振东,杨平,等.基于污泥流变特性对厌氧消化反应器的模拟研究[J].给水排水,2016,52(7):36-41.
    [36] WANG F P, ZHANG C S, HUO S H. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production[J].Environmental Technology,2017,38(9):1160-1168. DOI:10.1080/09593330.2016.1220429.
    [37] WU B X. CFD study of submersible mixers in anaerobic digesters[J]. Transactions of the ASABE,2017,60(2):275-282. DOI:10.13031/trans.12096.
    [38]曹秀芹,丁浩,蒋竹荷,等.液-液射流搅拌提高热水解污泥混合性能分析[J].环境工程学报,2018,12(1):316-323.DOI:10.12030/j.cjee.201706194.
    [39]王乐,樊敏,詹翔宇,等.气体搅拌下厌氧消化反应器CFD数值模拟及模型研究[J].农业机械学报,2018,49(2):305-312.
    [40] MEISTER M, REZAVAND M, EBNER C, et al. Mixing non-Newtonian flows in anaerobic digesters by impellers and pumped recirculation[J]. Advances in Engineering Software,2018,115:194-203. DOI:10.1016/j.advengsoft.2017.09.015.
    [41] CRAIG K J, NIEUWOUDT M N, NIEMAND L J. CFD simulation of anaerobic digester with variable sewage sludge rheology[J].Water Research,2013,47(13):4485-4497. DOI:10.1016/j.watres.2013.05.011.
    [42] SAJJADI B, RAMAN A A A, PARTHASARATHY R. Fluid dynamic analysis of non-Newtonian flow behavior of municipal sludge simulant in anaerobic digesters using submerged recirculating jets[J]. Chemical Engineering Journal,2016,298:259-270.DOI:10.1016/j.cej.2016.03.069.
    [43] METZNER A B, OTTO R E. Agitation of non-Newtonian fluids[J]. American Institute of Chemical Engineers,1957,3(1):3-10.DOI:10.1002/aic.690030103.
    [44] LIU J B, YANG M, ZHANG J Y, et al. A comprehensive insight into the effects of microwave-H2O2, pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation[J]. Bioresource Technology,2018,256:118-127. DOI:10.1016/j.biortech.2018.01.126.
    [45] KAZEMZADEH A, EIN-MOZAFFARI F, LOHI A, et al. Effect of the rheological properties on the mixing of Herschel-Bulkley fluids with coaxial mixers:Applications of tomography, CFD, and response surface methodology[J]. Canadian Journal of Chemical Engineering,2016,94(12):2394-2406. DOI:10.1002/cjce.22601.
    [46] WICKLEIN E, BATSTONE D J, DUCOSTE J, et al. Good modelling practice in applying computational fluid dynamics for WWTP modelling[J]. Water Science and Technology,2016,73(5):969-982. DOI:10.2166/wst.2015.565.
    [47]曹秀芹,尹伟齐,赵振东.不同含水率下污泥流变模型的显著性水平分析[J].北京工业大学学报,2017,43(1):150-157.
    [48] ZHANG J S, HAWARD S J, WU Z G, et al. Evolution of rheological characteristics of high-solid municipal sludge during anaerobic digestion[J]. Applied Rheology,2016,26(3):1-10. DOI:10.3933/ApplRheol-26-32973.
    [49] ZHANG J S, XUE Y G, ESHTIAGHI N, et al. Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement[J]. Water Research,2017,116:34-43. DOI:10.1016/j.watres.2017.03.020.
    [50] SAFFARIAN M R, HAMEDI M H, SHAMS M. Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model[J]. Canadian Journal of Civil Engineering,2011,38(1):11-22. DOI:10.1139/L10-106.
    [51]董登志,张静思,吴志根,等.高含固污泥临界剪切应力影响因素的研究[J].西安交通大学学报,2017,51(11):57-62.DOI:10.7652/xjtuxb201711009.
    [52] MICALE G, GRISAFI F, RIZZUTI I, et al. CFD simulation of particle suspension height in stirred vessels[J]. Chemical Engineering Research and Design,2004,82(9):1204-1213. DOI:10.1205/cerd.82.9.1204.44171.
    [53] WANG Z, MAO Z S, SHEN X Q. Numerical simulation of macroscopic mixing in a rushton impeller stirred tank[J]. Chinese Journal of Process Engineering,2006,6(6):857-863. DOI:10.3321/j.issn:1009-606X.2006.06.001.
    [54] BELLO M R, SHARRATT P N. Modelling the effects of imperfect mixing on the performance of anaerobic reactors for sewage sludge treatment[J]. Journal of Chemical Technology and Biotechnology,1998,71:121-130. DOI:10.1002/(SICI)1097-4660(199802)71:2<121::AID-JCTB836>3.0.CO;2-7.
    [55]王令闪,苏红军,徐世艾.高黏体系中最大叶片式搅拌桨直径的CFD优化[J].化学工程,2011,39(7):9-12.
    [56]尹伟齐,曹秀芹,张达飞.猪粪流变特性及基于黏度曲线的反应器死区研究[J].中国沼气,2017,35(3):27-32.
    [57] CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society Civil Engineers,1943,30:219-237.
    [58] GRABER S D. A critical review of the use of the G-value(RMS velocity gradient)in environmental engineering[J]. Development in Theoret&Applied Mechanics,1994,17:533-556.
    [59]曹秀芹,杨平,赵振东.污泥流变学及其厌氧消化混合特性数值模拟研究进展[J].环境工程学报,2015,9(3):997-1003.
    [60]芦汉超.机械搅拌厌氧消化池流态研究[D].北京:清华大学,2015.
    [61] WANG F P, ZHANG C S, HUO S H. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production Influence of fluid dynamics on anaerobic digestion of food waste for biogas production[J]. Environmental Technology,2016,38(9):1160-1168.DOI:10.1080/09593330.2016.1220429.
    [62]曹秀芹,杜金海,李彩斌,等.污泥厌氧消化搅拌条件的优化分析[J].环境科学与技术,2015,38(1):100-105.
    [63] KARIM K, KLASSON K T, HOFFMANN R, et al. Anaerobic digestion of animal waste:Effect of mixing[J]. Bioresource Technology,2005,96:1607-1612. DOI:10.1016/j.biortech.2004.12.021.
    [64] APPELS L, BAEYENS J, DEGREVE J, et al. Principles and potential of the anaerobic digestion of waste-activated sludg[J].Progress in Energy and Combustion Science,2008,34:755-781. DOI:10.1016/j.pecs.2008.06.002.
    [65] KINYUA M N, ZHANG J, CAMACHO C F, et al. Use of physical and biological process models to understand the performance of tubular anaerobic digesters[J]. Biochemical Engineering Journal,2016,107:35-44. DOI:10.1016/j.bej.2015.11.017.
    [66] LEBRANCHU A, DELAUNAY S, MARCHAL P, et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters[J]. Bioresource Technology,2017,245:1139-1147. DOI:10.1016/j.biortech.2017.07.113.
    [67] KESHTKAR A, MEYSSAMI B, ABOLHAMD G, et al. Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure[J]. Bioresource Technology,2003,87:113-124. DOI:10.1016/S0960-8524(02)00104-9.
    [68] WU B X, BIBEAU E L, GEBREMEDHIN K G. Three-dimensional numerical simulation model of biogas production for anaerobic digesters[J]. Canadian Biosystems Engineering,2009,51:81-87. DOI:10.13031/2013.20924.
    [69] FLEMING J G. Novel simulation of anaerobic digestion using computational fluid dynamics[D]. Raleigh, NC:North Carolina State University,2002.
    [70]杨艳清. EGSB反应器处理低浓度挥发酸废水CFD-生化反应耦合模型及模拟研究[D].重庆:重庆大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700