磷灰石结构荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的合成、发光和能量传递
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis, Luminescent Properties and Energy Transfer Behavior of Apatite Phosphor Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)
  • 作者:程少文 ; 张娜 ; 卓宁泽 ; 朱月华 ; 陈永浩 ; 蒋鹏 ; 杜文慧 ; 叶恩淦 ; 王海波
  • 英文作者:CHENG Shao-Wen;ZHANG Na;ZHUO Ning-Ze;ZHU Yue-Hua;CHEN Yong-Hao;JIANG Peng;DU Wen-Hui;YE En-Gan;WANG Hai-Bo;Energy Science and Engineering, Nanjing Tech University;Institute of Electronic and Photonic Materials of Light Industry;Research Institute of Electronic and Photonic Materials, Nanjing Tech University;College of Material Science and Engineering, Nanjing Tech University;
  • 关键词:高温固相法 ; 氟磷灰石 ; Ce3+/Tb3+激活荧光粉 ; 发光 ; 能量传递
  • 英文关键词:high-temperature solid-state reaction;;fluorapatite;;Ce3+/Tb3+-activated phosphor;;luminescence;;energy transfer
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:南京工业大学能源科学与工程学院;轻工业部南京电光源材料科学研究所;南京工业大学电光源材料研究所;南京工业大学材料工程与科学学院;
  • 出版日期:2019-02-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划(No.2017YFB0404300,2017YFB0404301);; 江苏省自然科学基金(No.BK20171128);; 江苏省科技成果转化(No.BA2017100)资助项目
  • 语种:中文;
  • 页:WJHX201902004
  • 页数:8
  • CN:02
  • ISSN:32-1185/O6
  • 分类号:35-42
摘要
采用高温固相法合成了系列Ce~(3+)和Ce~(3+)/Tb~(3+)激活的具有磷灰石结构荧光粉Ba_(10)(PO_4)_6F_2。用X射线衍射(XRD)、扫描电镜(SEM)、激发和发射(PLE和PL)光谱对样品进行了表征分析。研究结果表明:所合成的荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)具有氟磷灰石结构,样品微观呈现不规则形貌。荧光粉Ba10-x(PO4)6F2∶x Ce~(3+)的相对发射强度随着x增加而增强,当x=0.09时,荧光强度达到最大。荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的激发光谱为240~330 nm的宽带,发射光谱呈现出Ce~(3+)的5d→4f跃迁紫外光(335和358 nm)发射和Tb~(3+)的4f→4f跃迁绿光(542 nm)发射。光谱特性表明,发光过程中存在Ce~(3+)→Tb~(3+)能量传递,能量传递效率可以达到60%。计算Ce~(3+)和Tb~(3+)的临界距离为0.79 nm,能量传递机理是偶极-偶极交互作用。此外,详细论述了Ce~(3+)和Tb~(3+)之间的能量传递和发光的过程。通过调节Tb~(3+)的掺杂浓度,对荧光粉发光色坐标与Tb~(3+)的掺杂浓度之间的关系也进行了研究,随着Tb~(3+)的掺杂量从0增加0.52,荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的发射光谱色坐标可以从(0.149 4,0.045 1)蓝色区变化到(0.280 1,0.585 3)绿色区。
        A series of Ce~(3+)-and Ce~(3+)/Tb~(3+)-activated Ba_(10)(PO_4)_6F_2phosphors with apatite structure have been synthesized via high temperature solid-state reaction. X-ray diffraction(XRD), scanning electron microscopy(SEM), the photoluminenscence excitation(PLE) spectra and photoluminescence(PL) spectra were used to characterize samples. The results revealed that the fluorapatite structured Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)phosphor particles with irregular morphology have been obtained. The relative intensities of PL spectra of Ba10-x(PO4)6F2:x Ce~(3+)phosphors increased with increasing x values, and reached the maximum at x=0.09. The as-prepared phosphors Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)phosphors exhibited broad excitation band ranging from 240 to 330 nm. The emission spectra of Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)phosphor showed the violet-emitting band centered at 335 and 358 nm and green light-emitting band centered at 542 nm, which originate from the 5d→4f transitions of Ce~(3+)and 4f→4f transitions of Tb~(3+), respectively.The spectral characteristics showed that the energy transfer occurs from Ce~(3+)to Tb~(3+)in Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb3 +phosphors, and the energy transfer efficiency between Ce3 +and Tb3 +could reach up to 60%. The critical distance of Ce~(3+)and Tb~(3+)was calculated to be 0.79 nm, and the mechanism of energy transfer from Ce~(3+)to Tb~(3+)is dipole-dipole interaction. In addition, the energy transfer behavior and luminescence process were discussed in detail. By adjusting the concentration of Tb3 +, the relationship between chromatic coordinate and the doping concentration of Tb~(3+)was studied. The Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)phosphors emission color could adjust from blue to green, and the chromatic coordinate tuned from(0.149 4, 0.045 1) to(0.280 1, 0.585 3) with increasing the concentration of Tb~(3+)from 0 to 0.52.
引文
[1] Li G G, Lin C C, Wei Y, et al. Chem. Commun., 2016,52(46):7376-7379
    [2] Pust P, Weiler V, Hecht C, et al. Nat. Mater., 2014,13(9):891-896
    [3] Jiang G X, Yang B B, Zhao G Y, et al. Opt. Mater., 2018,83:93-98
    [4] Guo Q F, Liao L B, Molokeev M S, et al. Mater. Res. Bull.,2015,72:245-251
    [5] Feng L J, Tian Y, Wang L, et al. J. Mater. Sci., 2016,51(6):2841-2849
    [6] Shang M M, Geng D L, Zhang Y, et al. J. Mater. Chem.,2012,22(36):19094-19104
    [7] Lv Y, Jin Y H, Wang C L, et al. RSC Adv., 2017,7(69):43700-43707
    [8] Guo Q F, Wang Q D, Jiang L W, et al. Phys. Chem. Chem.Phys., 2016,18(23):15545-15554
    [9] Li G G, Zhao Y, Wei Y, et al. Chem. Commun., 2016,52(16):3376-3379
    [10]Sokolnicki J, Zych E. J. Lumin., 2015,158:65-69
    [11]Zhu G, Shi Y R, Mikami M, et al. Opt. Mater. Express,2013,3(2):229-236
    [12]Que M D, Ci Z P, Wang Y H, et al. CrystEngComm, 2013,15(32):6389-6395
    [13]Liu H K, Zhang Y Y, Liao L B, et al. J. Lumin., 2014,156:49-54
    [14]Shang M M, Geng D L, Yang D M, et al. Inorg. Chem.,2013,52(6):3102-3112
    [15]Fu L L, Fu Z L, Yu Y N, et al. Ceram. Int., 2015,41(5):7010-7016
    [16]Li K, Geng D L, Shang M M, et al. J. Phys. Chem. C, 2014,118(20):11026-11034
    [17]Wei L, Jia Y C, Lv W Z, et al. New J. Chem., 2013,37(11):3701-3705
    [18]Li G G, Zhang Y, Geng D L, et al. ACS Appl. Mater.Interfaces, 2012,4(1):296-305
    [19]Li G G, Geng D L, Shang M M, et al. J. Phys. Chem. C,2011,115(44):21882-21892
    [20]Lee S H, Choi J I, Kim Y J, et al. Mater. Charact., 2015,103:162-169
    [21]Kang Y C, Kim E J, Lee D Y, et al. J. Alloys Compd.,2002,347(1):266-270
    [22]Tao Z X, Huang Y L, Seo H J. Dalton Trans., 2013,42(6):2121-2129
    [23]White T J, Dong Z L. Acta Crystallogr. Sect. B:Struct. Sci.,2010,59(1):1-16
    [24]Mathew M, Mayer I, Dickens B, et al. J. Solid State Chem.,1979,28(1):79-95
    [25]Berry L G, Mason B, Dietrich R V. Mineralogy, Concepts,Descriptions, Determinations. San Francisco:W. H. Freeman,1983:550-551
    [26]Han X M, Lin J, Xing R B, et al. J. Phys.:Condens. Matter,2003,15(12):2115-2126
    [27]Liu H K, Luo Y, Mao Z Y, et al. J. Mater. Chem. C, 2014,2(9):1619-1627
    [28]Zeng C, Liu H K, Hu Y M, et al. Opt. Laser Technol., 2015,74:6-10
    [29]Jeon Y I, Bharat L K, Yu J S. J. Lumin., 2015,166:93-100
    [30]Tang W J, Zhang F. Eur. J. Inorg. Chem., 2014(21):3387-3392
    [31]Guan A X, Yao C Y, Wang G F, et al. J. Lumin., 2016,32(4):1-6
    [32]Jin Y H, Lv Y, Hu Y H, et al. J. Lumin., 2017,185:106-111
    [33]Ding X, Wang Y H. Phys. Chem. Chem. Phys., 2017,19(3):2449-2458
    [34]Guo Y, Moon B K, Choi B C, et al. Ceram. Int., 2016,42(16):18324-18332
    [35]Liang C, You H P, Fu Y B, et al. Optik, 2017,131:335-342
    [36]Dexter D L, Schulman J H. J. Chem. Phys., 1954,22(6):1063-1070
    [37]Hussain S K, Giang T T H, Yu J S. J. Alloys Compd., 2018,739:218-226
    [38]YU Ting(于汀), GAO Ming-Yan(高明燕), SONG Yan(宋岩),et al. Chinese J. Inorg. Chem.(无机化学学报), 2018,34(5):857-863
    [39]SUN Jia-Yue(孙家跃), DU Hai-Yan(杜海燕), HU WenXiang(胡文祥). Solid Luminous Materials(固体发光材料).Beijing:Chemical Industry Press, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700