羟基化氮化硼催化乙烷氧化脱氢制乙烯(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst
  • 作者:石磊 ; 闫冰 ; 邵丹 ; 姜凡 ; 王东琪 ; 陆安慧
  • 英文作者:Lei Shi;Bing Yan;Dan Shao;Fan Jiang;Dongqi Wang;An-Hui Lu;State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology;Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences;
  • 关键词:氮化硼 ; 羟基化 ; 乙烷 ; 氧化脱氢 ; 乙烯
  • 英文关键词:Boron nitride;;Hydroxylation;;Ethane;;Oxidative dehydrogenation;;Ethylene
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:大连理工大学化化工学院精细化工国家重点实验室;中国科学院高能物理研究所多学科研究中心;
  • 出版日期:2017-02-15
  • 出版单位:催化学报
  • 年:2017
  • 期:v.38
  • 基金:supported by the National Natural Science Foundation of China (21225312, U1462120, 21473206);; Cheung Kong Scholars Programme of China (T2015036)~~
  • 语种:英文;
  • 页:CHUA201702025
  • 页数:7
  • CN:02
  • ISSN:21-1601/O6
  • 分类号:215-221
摘要
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(>800℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1g_(C2H4)g_(cat)~(-1)h~(-1)的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.~1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO~·和HO_2~·活性位.密度泛函理论计算表明,乙烷首先在BNO~·或HO_2~·位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.
        Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO_2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.
引文
[1]https://www.ihs.com/products/chemical‐technology‐pep‐coal‐to‐olefins‐2011.html.
    [2]A.S.Bodke,D.A.Olschki,L.D.Schmidt,E.Ranzi,Science,1999,285,712-715.
    [3]H.Zimmermann,R.Walzl,in:Ullmann's Encyclopedia of Industrial Chemistry,Wiley‐VCH Verlag GmbH&Co.KGaA,Weinheim,2000.
    [4]C.A.Gartner,A.C.van Veen,J.A.Lercher,ChemC atC hem,2013,5,3196-3217.
    [5]R.Grabowski,Catal.Rev.‐Sci.Eng.,2006,48,199-268.
    [6]M.M.Bhasin,J.H.McC ain,B.V.Vora,T.Imai,P.R.Pujado,Appl.Catal.A,2001,221,397-419.
    [7]F.Cavani,N.Ballarini,A.Cericola,Catal.Today,2007,127,113-131.
    [8]M.A.Ba?ares,Catalysis Today,1999,51,319-348.
    [9]Q.J.Ge,B.Zhaorigetu,C.Y.Yu,W.Z.Li,H.Y.Xu,Catal.Lett.,2000,68,59-62.
    [10]H.X.Dai,C.F.Ng,C.T.Au,Catal.Lett.,1999,57,115-120.
    [11]P.Botella,E.García‐González,A.Dejoz,J.M.L.Nieto,M.I.Vázquez,J.González‐Calbet,J.Catal.,2004,225,428-438.
    [12]C.A.G?rtner,A.C.van Veen,J.A.Lercher,J.Am.Chem.Soc.,2014,136,12691-12701.
    [13]W.Qi,D.S.Su,ACS Catal.,2014,4,3212-3218.
    [14]B.Frank,M.Morassutto,R.Schom?cker,R.Schl?gl,D.S.Su,Chem‐CatC hem,2010,2,644-648.
    [15]R.T.Paine,C.K.Narula,Chem.Rev.,1990,90,73-91.
    [16]Q.H.Weng,X.B.Wang,Y.Bando,D.Golberg,Chem.Soc.Rev.,2016,45,3989-4012.
    [17]J.T.Grant,C.A.Carrero,F.Goeltl,J.Venegas,P.Mueller,S.P.Burt,S.E.Specht,W.P.McD ermott,A.Chieregato,I.Hermans,Science,2016,354,1570-1573.
    [18]L.Shi,D.Q.Wang,W.Song,D.Shao,W.‐P.Zhang,A.‐H.Lu,Chem‐CatC hem,DOI:10.1002/cctc.201700004.
    [19]A.Bhattacharya,S.Bhattacharya,G.P.Das,Phys.Rev.B:Condens.Matter,2012,85,035415/1-035415/9.
    [20]T.Sainsbury,A.Satti,P.May,Z.Wang,I.McG overn,Y.K.Gun'ko,J.Coleman,J.Am.Chem.Soc.,2012,134,18758-18771.
    [21]F.Cavani,F.Trifirò,Catal.Today,1999,51,561-580.
    [22]C.A.Carrero,R.Schl?gl,I.E.Wachs,R.Schomaecker,ACS Catal.2014,4,3357-3380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700