国内外乙烯生产工艺和催化剂研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research development of ethylene production technologies and catalysts in China and overseas
  • 作者:周翔 ; 田辉平 ; 许明德
  • 英文作者:Zhou Xiang;Tian Huiping;Xu Mingde;Research Institute of Petroleum Processing,Sinopec;
  • 关键词:有机化学工程 ; 乙烯生产工艺 ; 石油基 ; 煤基
  • 英文关键词:organic chemical engineering;;ethylene production process;;oil-based;;coal-based
  • 中文刊名:GYCH
  • 英文刊名:Industrial Catalysis
  • 机构:中国石化石油化工科学研究院;
  • 出版日期:2018-11-15
  • 出版单位:工业催化
  • 年:2018
  • 期:v.26;No.242
  • 语种:中文;
  • 页:GYCH201811004
  • 页数:9
  • CN:11
  • ISSN:61-1233/TQ
  • 分类号:22-30
摘要
概述乙烯主要的生产工艺如蒸气裂解制乙烯、石脑油催化裂解制乙烯、重油催化裂解制乙烯、炼厂气干气制乙烯、C_4制乙烯、甲醇制乙烯、乙醇制乙烯、甲烷制乙烯、合成气制乙烯和生物法制乙烯等。主要比较工艺特点、反应机理、催化剂以及典型工艺等方面。认为由于原料的差异,煤基工艺发展相对较为成熟,石油基工艺发展相对缓慢,利用煤基乙烯生产工艺和催化剂将有助于开发石油基的工艺和催化剂。
        Main technologies of producing ethylene,such as,steam cracking,naphtha deep catalytic cracking,heavy oil deep catalytic cracking,separating of refinery dry gas,C4 deep catalytic cracking,methanol to olefins,ethanol to olefins,methane to ethylene,syngas to ethylene,biology technology and so on were summarized. Especially,technology characteristics,reaction mechanism,catalysts and typical technologies were compared. According to the comparison,coal based technologies were more developed than the oil based because difference of feed stock. By taking advantage of the coal based technologies,the oil based technologies would become more important and applicable.
引文
[1]何细藕.烃类蒸汽裂解制乙烯技术发展回顾[J].乙烯工业,2008,(2):59-64.He Xi’ou. Development of ethylene production technology by steam cracking of hydrocarbons[J]. Ethylene Industry,2008,(2):59-64.
    [2]崔德春,王子军,侯焕娣.蒸汽裂解工艺重质原料优质化[J].乙烯工业,2009,(1):43-46.Cui Dechun,Wang Zijun,Hou Huandi. Quality optimization of heavy feedstock for steam cracking process[J]. Ethylene Industry,2009,(1):43-46.
    [3]何细藕.烃类蒸汽裂解原理与工业实践(二)[J].乙烯工业,2008,(4):59-64.He Xi’ou. Principle and industrial practice of hydrocarbon steam cracking(Ⅱ)[J]. Ethylene Industry,2008,(4):59-64.
    [4]魏晓丽,袁起民,毛安国,等.直馏石脑油催化裂解与热裂解反应行为研究[J].石油炼制与化工,2012,(11):21-26.Wei Xiaoli,Yuan Qimin,Mao Anguo,et al. Reaction behavior of straight-run naphtha during catalytic cracking and thermal cracking[J]. Petroleum Processing and Petrochemicals,2012,(11):21-26.
    [5]Picciotti M. Novel ethylene technologies developing,but steam cracking remains king[J]. Oil and Gas Journal,1997,95(25):53-58.
    [6]陈希强,汪哲明,肖景娴. ZSM-5沸石的原位晶化及其石脑油催化裂解性能[J].化学反应工程与工艺,2011,27(6):481-487.Chen Xiqiang,Wang Zheming,Xiao Jingxian. In-situ crystallization of ZSM-zeolite and catalytic cracking performance for naphtha[J]. Chemical Reaction Engineering and Technology,2011,27(6):481-487.
    [7]吉媛媛,王焕茹,满毅,等. ZSM-5分子筛晶粒尺寸对石脑油催化裂解性能的影响[J].石油化工,2010,39(8):844-848.Ji Yuanyuan,Wang Huanru,Man Yi,et al. Effect of crystal size of ZSM-5 zeolite on catalytic cracking of naphtha[J].Petrochemical Technology,2010,39(8):844-848.
    [8]Komatsu T,Ishihara H,Fukui Y,et al. Selective formation of alkenes through the cracking of n-heptane on Ca2+-exchanged ferrierite[J]. Applied Catalysis A:General,2001,214(1):103-109.
    [9]Mao R L V,Al-Yassir N,Nguyen D T T. Experimental evidence for the pore continuum in hybrid catalysts used in the selective deep catalytic cracking of n-hexane and petroleum naphthas[J]. Microporous&Mesoporous Materials,2005,85(1):176-182.
    [10]朱丽华,刘艳会. MTO工艺与ACO工艺技术对比分析[J].黑龙江科技信息,2017,(4):73.
    [11]丁雪.催化裂化干气中乙烯的低聚反应研究[D].青岛:中国石油大学(华东),2010.Ding Xue. Study on the oligomerization of ethylene in FCC day gas[D]. Qingdao:China University of Petroleum(East China),2010.
    [12]赵光辉,李景艳,李小军,等.炼厂干气中乙烯的分离技术及综合利用[J].化工中间体,2008,(3):25-29.Zhao Guanghui,Li Jingyan,Li Xiaojun,et al. Separating techniques and comprehensive utilization on ethylene in the refinery dry gas[J]. Chemical Intermediates,2008,(3):25-29.
    [13]梁玮.炼厂催化裂化干气中稀乙烯资源利用综述[J].中外能源,2008,(6):67-73.Liang Wei.Overview for utilization of dilute ethylene in FCC dry gas from refinery[J]. Sino-Global Energy,2008,(6):67-73.
    [14]Powers D H,Webber K M. Enhanced production of light olefins:US,6888038[P]. 2005-05-03.
    [15]Keil F J. Methanol-to-hydrocarbons:process technology[J]. Microporous&Mesoporous Materials,1999,29(1/2):49-66.
    [16]Min C Z,Qiang L,Guo S W,et al. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures&dagger[J].Angewandte Chemie,2006,118(39):6662-6665.
    [17]Triantafillidis C S,Vlessidis A G,Nalbandian L,et al.Effect of the degree and type of the dealumination method on the structural,compositional and acidic characteristics of H-ZSM-5 zeolites[J]. Microporous&Mesoporous Materials,2001,47(2):369-388.
    [18]Valle B,Alonso A,Atutxa A,et al. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process[J]. Catalysis Today,2005,106(1/4):118-122.
    [19]Inui T,Matsuda H,Yamase O,et al. Highly selective synthesis of light olefins from methanol on a novel Fe-silicate[J]. Journal of Catalysis,1986,17(31):491-501.
    [20]Inui T,Miyamoto A,Matsuda H,et al. New aspects in catalytic performance of novel metallosilicates having the pentasil pore-opening structure[J]. Studies in Surface Science&Catalysis,1986,28:859-866.
    [21]尤培培.甲醇制低碳烯烃HZSM-5催化剂的改性研究[D].青岛:中国石油大学(华东),2015.
    [22]Brown D M,Bhatt B L,Hsiung T H,et al. Novel technology for the synthesis of dimethyl ether from syngas[J]. Catalysis Today,1991,8(3):279-304.
    [23]关新新,刘克成,武光军,等. SAPO-34分子筛的氮化及在甲醇制烯烃(MTO)中的应用[J].分子催化,2006,20(3):270-272.Guan Xinxin,Liu Kecheng,Wu Guangjun,et al. Nitridation of SAPO-34 molecular sieve and its application in methanol transform into olefins[J]. Journal of Molecular Catalysis(China),2006,20(3):270-272.
    [24]关新新,武光军,刘克成,等.含N微孔SAPO-34分子筛的制备、表征及催化性能[J].石油学报(石油加工),2007,23(1):15-19.Guan Xinxin,Wu Guangjun,Liu Kecheng,et al. Preparation and catalytic activity of n-contiontaining microporous SAPO-34 molecular sieves[J]. Acta Petrolei Sinica(Petroleum Processing Section),2007,23(1):15-19.
    [25]Guan Xinxin,Zhang Fuxiang,Wu Guangjun,et al. Synthesis and characterization of a basic molecular sieve:nitrogenincorporated SAPO-34[J]. Materials Letters,2006,60(25/26):3141-3144.
    [26]Filip D P Mees,Pascal Van Der Voort,Pegie Cool,et al.Controlled reduction of the acid site density of SAPO-34molecular sieve by means of silanation and disilanation[J]. Journal of Physical Chemistry B,2003,107(14):3161-3167.
    [27]Ito T,Lunsford J H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide[J]. Nature,1985,314(6013):721-722.
    [28]Conway S J,Lunsford J H. The oxidative dehydrogenation of ethane over chlorine-promoted lithium-magnesium oxide catalysts[J].Journal of Catalysis,1991,22(52):513-522.
    [29]Bi Y,Zhen K,Jiang Y,et al. Catalytic oxidative coupling of methane over alkali,alkaline earth and rare earth metal oxides[J]. Applied Catalysis,1988,39(1/2):185-190.
    [30]方学平,李树本.甲烷氧化偶联W-Mn催化剂的制备及表征[J].分子催化,1992,6(4):254-262.
    [31]方学平,李树本,林景治,等.甲烷在W-Mn体系催化剂上氧化偶联制乙烯[J].分子催化,1992,6(6):427-433.
    [32]Choudhary V R,Rane V H. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons[J]. Journal of Catalysis,1991,130(2):411-422.
    [33]张明森,冯英杰,柯丽,等.甲烷氧化偶联制乙烯催化剂的研究进展[J].石油化工,2015,(4):401-408.Zhang Mingsen,Feng Yingjie,Ke Li,et al. A review of catalysts for oxidative coupling of methane[J]. Petrochemical Technology,2015,(4):401-408.
    [34]Guo Xiaoguang,Fang Guangzong,Li Gang,et al. Direct,nonoxidative conversion of methane to ethylene,aromatics,and hydrogen[J]. Science,2014,344(6184):616-619.
    [35]Ioffe M S,Pollington S D,Wan J K S. High-power pulsed radio-frequency and microwave catalytic processes:selective production of acetylene from the reaction of methane over carbon[J]. Journal of Catalysis,1995,151(2):349-355.
    [36]Gordon C L,Lobban L L,Mallinson R G. Ethylene production using a Pd and Ag-Pd-Y-zeolite catalyst in a DCplasma reactor[J]. Catalysis Today,2003,84(1):51-57.
    [37]Jager B,Espinoza R. Advances in low temperature FischerTropsch synthesis[J]. Catalysis Today,1995,23(1):17-28.
    [38]Vannice M A. The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen[J]. Catalysis Reviews,1976,14(1):153-191.
    [39]Das D,Ravichandran G,Chakrabarty D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts:effect of manganese addition[J]. Catalysis Today,1997,36(3):285-293.
    [40]Galvis H M T,Koeken A C J,Bitter J H,et al. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today,2013,215(41):95-102.
    [41]Venter J,Kaminsky M,Geoffroy G L,et al. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4olefins from CO and H2:Ⅰ. Chemisorption and catalytic behavior[J]. Journal of Catalysis,1987,103(2):450-465.
    [42]郭国清,黄友梅. CO/H2合成低碳烯烃催化剂制备的研究[J].天然气化工(C1化学与化工),1997,(2):25-29.Guo Guoqing,Huang Youmei. Studies on preparation of catalyst for light olefin synthesis via carbon monoxide hydrogenation[J]. Natural Gas Chemical Industry,1997,(2):25-29.
    [43]Wang D,Yang G,Ma Q,et al. Confinement effect of carbon nanotubes:copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. Acs Catalysis,2012,2(9):1958-1966.
    [44]Eckert C,Xu W,Xiong W,et al. Ethylene-forming enzyme and bioethylene production[J]. Biotechnology for Biofuels,2014,7(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700