基于风险的电-热综合能源系统风电消纳能力评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Risk-based Admissibility Assessment of Wind Generation in Integrated Electric-heat Systems
  • 作者:巩志皓 ; 王程
  • 英文作者:GONG Zhihao;WANG Cheng;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University;
  • 关键词:风电消纳评估 ; 电-热综合能源系统 ; 不确定集合 ; 运行风险
  • 英文关键词:wind generation admissibility assessment;;integrated electric-heat system;;uncertainty set;;operation risk
  • 中文刊名:QNYW
  • 英文刊名:Journal of Global Energy Interconnection
  • 机构:新能源电力系统国家重点实验室(华北电力大学);
  • 出版日期:2019-07-25
  • 出版单位:全球能源互联网
  • 年:2019
  • 期:v.2;No.10
  • 基金:国家自然科学基金项目(51807059)~~
  • 语种:中文;
  • 页:QNYW201904003
  • 页数:8
  • CN:04
  • ISSN:10-1550/TK
  • 分类号:15-22
摘要
伴随风电大规模接入电网,其不确定性为电网的决策调度带来了新的挑战,风电消纳评估由此成为研究热点之一。以不确定集合表征风电不确定性,建立了两阶段鲁棒优化模型,以解决电-热综合能源系统的风电消纳能力评估问题。主问题基于风险指标优化风电可消纳域,并在算法处理中引入分段线性化处理非线性的风险表达式;子问题引入风电可接纳判据寻求风电不确定集合中的极端场景。最后着重比较电-热综合能源系统与电力系统的风电消纳能力差异。
        With large-scale wind power access to power grid,the uncertainty of wind power has added new difficulties to the operation and decision-making processes of power grids.Wind generation admissibility assessment has become one of the research hotspots. This study combines wind generation admissibility assessment with integrated electric-heat systems and constructs uncertainty sets to embody wind power uncertainty. In this study, a two-stage robust optimization model is established. In the main problem, wind generation admissibility domain is optimized based on the operational risk, and piecewise linearization is introduced to deal with the nonlinearity risk expression. The sub-problem introduces a wind generation admissible criterion to seek the worst case in the uncertain set of wind power. Finally, the differences of simulation results between integrated electric-heat systems and power systems are compared.
引文
[1]国家统计局能源司.中国能源统计年鉴2017[M].北京:中国统计出版社,2018.
    [2]李海波,鲁宗相,乔颖,等.大规模风电并网的电力系统运行灵活性评估[J].电网技术,2015,39(6):1672-1678.Li Haibo,Lu Zongxiang,Qiao Ying,et al.Assessment on operational flexibility of power grid with grid-connected largescale wind farm[J].Power System Technology,2015,39(6):1672-1678(in Chinese).
    [3]J.Wang,M.Shahidehpour,Z.Li.Security-constrained unit commitment with volatile wind power generation[J].IEEETransactions on Power Systems,2008,23(3):1319-1327.
    [4]Q.Wang,Y.Guan,J.Wang.A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output[C]//IEEE.2012 IEEE Power and Energy Society General Meeting.San Diego:IEEE,2012.
    [5]J.Zhao,T.Zheng,E.Litvinov.Variable resource dispatch through Do-Not-Exceed limit[J].IEEE Transactions on Power Systems,2015,30(2):820-828.
    [6]F.Qiu,Z.Li,J.Wang.A data-driven approach to improve wind dispatchability[J].IEEE Transactions on Power Systems,2017,3(1):421-429.
    [7]C.Wang,F.Liu,J.Wang,et al.Risk-based admissibility assessment of wind generation integrated into a bulk power system[J].IEEE Transactions on Sustainable Energy,2016,7(1):325-336.
    [8]C.Wang,F.Liu,J.Wang,et al.Robust risk-constrained unit commitment with large-scale wind generation:an adjustable uncertainty set approach[J].IEEE Transactions on Power Systems,2017,32(1):723-733.
    [9]R.Jiang,J.Wang and Y.Guan.Robust unit commitment with wind power and pumped storage hydro[J].IEEE Transactions on Power Systems,2012,27(2):800-810.
    [10]Z.Li,W.Wu,M.Shahidehpour,et al.Combined heat and power dispatch considering pipeline energy storage of district heating network[J].IEEE Transactions on Sustainable Energy,2016,7(1):12-22.
    [11]Z.Li,W.Wu,J.Wang,et al.Transmission-constrained unit commitment considering combined electricity and district heating networks[J].IEEE Transactions on Sustainable Energy,2016,7(2):480-492.
    [12]Jinbo Huang,Zhigang Li,Q.H.Wu.Coordinated dispatch of electric power and district heating networks:a decentralized solution using optimality condition decomposition[J].Applied Energy,2017,206:1508-1522.
    [13]Xinyu Chen,Chongqing Kang,Mark O’Malley,et al.Increasing the flexibility of combined heat and power for wind power integration in china:modeling and implications[J].IEEETransactions on Power Systems,2015,30(4):1848-1857.
    [14]卢志刚,杨宇,耿丽君,等.基于Benders分解法的电热综合能源系统低碳经济调度[J].中国电机工程学报,2018,38(7):1922-1934,2208.Lu Zhigang,Yang Yu,Geng Lijun,et al.Low-carbon economic dispatch of the integrated electrical and heating systems based on Benders decomposition[J].Proceedings of the CSEE,2018,38(7):1922-1934,2208(in Chinese).
    [15]Y.Cheng,N.Zhang,C.Kang.Low-carbon economic dispatch for integrated heat and power systems considering network constraints[J].The Journal of Engineering,2017,2017(14):2628-2633.
    [16]R.Lahdelma,H.Hakonen.An efficient linear programming algorithm for combined heat and power production[J].European Journal of Operational Research,2003,148(1):141-151.
    [17]贺平,孙刚,王飞,等.供热工程第四版[M].北京:中国建筑工业出版社,2009.
    [18]顾泽鹏,康重庆,陈新宇,等.考虑热网约束的电热能源集成系统运行优化及其风电消纳效益分析[J].中国电机工程学报,2015,35(14):3596-3604.Gu Zepeng,Kang Chongqing,Chen Xinyu,et al.Operation optimization of integrated power and heat energy systems and the benefit on wind power accommodation considering heating network constraints[J].Proceedings of the CSEE,2015,35(14):3596-3604(in Chinese).
    [19]X.Shen,S.Moura,Q.Guo,et al.Optimal dispatch model for district heating network based on interior-point method[C]//2017 IEEE Conference on Energy Internet and Energy System Integration(EI2).Beijing,2017:1-6.
    [20]L.Zhao,B.Zeng.Robust unit commitment problem with demand response and wind energy[C]//2012 IEEE Power and Energy Society General Meeting.San Diego,2012:1-8.
    [21]B.Zeng,L.Zhao.Solving two-stage robust optimization problems using a column-and-constraint generation method[J].Operations Research Letters,2013,41(5):457-461.
    [22]C.Wang,W.Wei,J.Wang,et al.Robust defense strategy for gas-electric systems against malicious attacks[J].IEEETransactions on Power Systems,2017,32(4):2953-2965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700