磷脂脂肪酸(PLFA)法检测内蒙古沙化梁地不同坡位羊柴(Hedysarum laeve Maxim)根围土壤微生物群落结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of soil microbial community structure in the rhizosphere of Hedysarum laeve Maxim revealed by phospholipid fatty acid (PLFA)
  • 作者:蔚杰 ; 成斌 ; 贺学礼 ; 赵丽莉
  • 英文作者:YU Jie;CHENG Bin;HE Xueili;ZHAO Lili;The College of Life Sciences,Hebei University;
  • 关键词:土壤微生物群落 ; 磷脂脂肪酸(PLFA) ; 空间分布 ; 羊柴 ; 内蒙古沙化梁地
  • 英文关键词:soil microbial community;;phospholipid fatty acid(PLFA);;spatial distribution;;Hedysarum laeve Maxim;;Inner Mongolia sandy ridge
  • 中文刊名:CULT
  • 英文刊名:Journal of Hebei Agricultural University
  • 机构:河北大学生命科学学院;
  • 出版日期:2019-01-15
  • 出版单位:河北农业大学学报
  • 年:2019
  • 期:v.42;No.203
  • 基金:国家自然科学基金项目(31270460);; 河北省自然科学基金项目(C2014201060);; 河北省生物学强势特色学科项目
  • 语种:中文;
  • 页:CULT201901010
  • 页数:8
  • CN:01
  • ISSN:13-1076/S
  • 分类号:61-68
摘要
本研究于2015年在内蒙古正蓝旗青格勒图选取典型沙化梁地,设置坡底、坡中和坡顶3个样地,按0~10cm、10~20cm、20~30cm、30~40cm、40~50cm等5个土层采集羊柴(Hedysarum laeve Maxim)根围土壤样品。通过磷脂脂肪酸(PLFA)技术和Sherlock微生物鉴定系统,研究了不同样地土壤微生物群落结构以及土壤因子的生态功能。结果表明:(1)不同样地土壤微生物PLFA具有较高的多样性,在3个样地分别检测到30、31和26种磷脂脂肪酸(PLFA),构成土壤微生物群落的主要磷脂脂肪酸有15∶0anteiso、18∶1ω7c、18∶1ω9c、17∶0iso、17∶1ω7c10-methyl、18∶2ω6c、20∶0 10-methyl、17∶0anteiso、18∶1ω7c10-methyl、17∶1ω8c、18∶3ω6c、17∶0 10-methyl、16∶1ω5c、19∶3ω6c和19∶0anteiso。(2)羊柴根围土壤微生物主要有AM真菌(AMFungi)、革兰氏阴性菌(Gram Negative)、真核生物(Eukaryote)、真菌(Fungi)、革兰氏阳性菌(Gram Positive)、厌氧菌(Anaerobe)和放线菌(Actinomycetes)。各类微生物的含量表现为坡底>坡中>坡顶。(3)在3个样地中,以15∶0iso、15∶0anteiso、16∶0iso、16∶1ω7c、16∶1ω5c、16∶0 10-methyl、17∶0iso、17∶0anteiso、17∶0cycloω7c、17∶1isoω9c、18∶1ω9c、18∶1ω7c和19∶0cycloω7c等具有较高的丰富度和优势度。(4)坡底、坡中和坡顶样地AM真菌分别占到真菌生物量68.7%、67.7%和68.4%,表明AM真菌是沙化梁地土壤微生物系统中真菌的主要组成部分。(5)真核生物和革兰氏阴性菌与土壤总氮和有机碳显著正相关;AM真菌、真菌、放线菌和革兰氏阳性菌与有机碳、pH和湿度显著正相关;厌氧菌与土壤湿度显著正相关;各类微生物均与土壤总磷和速效磷显著负相关。
        The experiment was conducted in Qinggele Tu,Zhenglan Qi of Inner Mongolia in2015.The bottom,middle and top of the slope were set as three sample plots,and soil layers of 0~10 cm,10~20 cm,20~30 cm,30~40 cm,and 40~50 cm were chosen to collect Hedysarumlaeve Maxim rhizosphere soil samples.Through the technology of phospholipid fatty acids(PLFA)and the Sherlock microbiological identification system,the soil microbial community structure was analyzed in three different slopes of Qinggele Tu,Zhenglan Qi of Inner Mongolia.The results show that:(1)The PLFA diversity of microorganism is high in different soil samples.30,31 and 26 phospholipids(PLFA)are tested in three sample spots respectively,and the main phospholipid fatty acid in microbial community of Hedysarum laeve Maxim rhizosphere soil are 15∶0 anteiso,18∶1ω7 c,18∶1ω9 c,17∶0 iso,17∶1ω7 c10-methyl,18∶2ω6 c,20∶0 10-methyl,17∶0 anteiso,18∶1ω7 c10-methyl,17∶1ω8 c,18∶3ω6 c,17∶0 10-methyl,16∶1ω5 c,19∶3ω6 cand 19∶0 anteiso.(2)The microbes in Hedysarum laeve Maxim rhizosphere soil are mainly AM Fungi,gram negative bacteria,eukaryotes,fungi,gram positive bacteria,anaerobic bacteria and actinomycetes.The content of the microbes in different soil layers are:the bottom of the slope>the middle of the slope>the top of the slope.(3)In the three sample plots,15∶0 iso,15∶0 anteiso,16∶0 iso,16∶1ω7 c,16∶1ω5 c,16∶0 10-methyl,17∶0 iso,17∶0 anteiso,17∶0 cycloω7 c,17∶1 isoω9 c,18∶1ω9 c,18∶1ω7 cand 19∶0 cycloω7 chave high abundance and do minance.(4)AM fungi accounts for 68.7%,67.7% and 68.4% respectively of the total fungi in the bottom,middle and top of the slope soil,which indicated that AM fungi is an important part of the foungi in soil microorganism system in arid region of Inner Mongolia.(5)Eukaryotes and gram negative bacteria are significantly positively correlated with soil total nitrogen and organic carbon.AM fungi,fungi,actinomycetes and gram positive bacteria are significantly positively correlated with organic carbon,pH and humidity.Anaerobic bacteria has significant positive correlation with humidity.All kinds of microorganisms are negatively correlated with total phosphorus and available phosphorus.
引文
[1]袁继英.固沙植物羊柴生态经济价值研究[J].内蒙古草业,2011,23(3):37-40.
    [2]张瑞娟,李华,林勤保,等.土壤微生物群落表征中磷脂脂肪酸(PLFA)方法研究进展[J].山西农业科学,2011,39(9):1020-1024.
    [3]薛子可,左易灵,葛佳丽,等.西北典型荒漠样地花棒根际土壤微生物群落功能多样性[J].河北农业大学学报,2017,40(3):65-71.
    [4]左易灵,贺学礼,王少杰,等.磷脂脂肪酸(PLFA)法检测蒙古沙冬青根围土壤微生物群落结构[J].环境科学,2016,37(7):2705-2713.
    [5]Crossman Z M,Ineson P,Evershed R P.The use of13Clabelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils[J].Organic Geochemistry,2005,36(5):769-778.
    [6]毕江涛,贺达汉,沙月霞,等.荒漠草原不同植被类型土壤微生物群落功能多样性[J].干旱地区农业研究,2009,27(5):149-155.
    [7]李强.周道玮.陈笑莹.地上枯落物的累积、分解及其在陆地生态系统中的作用[J].生态学报,2014,34(14):3807-3819.
    [8]方圆,王娓,姚晓东,等.我国北方温带草地土壤微生物群落组成及其环境影响因素[J].北京大学学报:自然科学版,2017,53(1):142-150.
    [9]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:271-272.
    [10]Bossio D A,Scow K M.Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns[J].Microbial Ecology,1998,35(3):265-278.
    [11]Frostegard A,Baath E.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J].Biology and Fertility of Soils,1996,22(1-2):59-65.
    [12]Abaye D A,Lawlor K,Hirsch P R.Changes in the microbial community of an arable soil caused by longterm metal conta mination[J].European Journal of Soil Science,2005,56(1):93-102.
    [13]刘灿然,马克平,周文能.生物群落多样性的测度方法Ⅲ与物种-多度分布模型有关的统计问题[J].生物多样性,1995(3):157-169.
    [14]贺纪正,葛源.土壤微生物生物地理学研究进展[J].生态学报,2008,28(11):5571-5582.
    [15]Wang M,Qu L,Ma K.Soil microbial properties under different vegetation types on Mountain Han[J].Science China:Life Sciences,2013,56(6):561-570.
    [16]Tunlid A,Hoitink H A,Low C.Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers[J].Applied and Environmental Microbiology,1991,55(6):1367-1374.
    [17]Fierer N,Bradford M A,Jackson R B.Toward an ecological classification of soil bacteria[J].Ecology,2007,88(6):1345-1364.
    [18]Eisenhauer N,Bessler H,Engels C,et al.Plant diversity effects on soil microorganisms support the singular hypothesis[J].Ecology,2010,91(2):485-496.
    [19]Bardgett R D,Chan K F.Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems[J].Soil Biology and Biochemistry,1999,31(7):1007-1014.
    [20]孙海新,刘训理.茶树根际微生物研究[J].生态学报,2004,24(7):1353-1357.
    [21]Baath E,Anderson T H.Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA based techniques[J].Soil Biology and Biochemistry,2003,35(7):955l-963.
    [22]苏丹,张凯,陈法霖,等.施氮对不同有机碳水平桉树林土壤微生物群落碳代谢的影响[J].生态学报,2015,35(18):5940-5947.
    [23]隋心,张荣涛,杨立宾,等.应用PLFA技术分析氮沉降对三江平原小叶章湿地土壤微生物群落结构的影响[J].中南林业科技大学学报,2016,36(12):91-97.
    [24]Chu H Y,Fierer N,Lauber C L,et al.Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J].Environmental Microbiology,2010,12(11):2998-3006.
    [25]牛佳,周小奇,蒋娜,等.若尔盖高寒湿地干湿土壤条件下微生物群落结构特征[J].生态学报,2011,31(2):474-482.
    [26]范富,张庆国,马玉露,等.不同植物条件下盐碱地土壤微生物研究[J].内蒙古民族大学学报:自然科学版,2017,32(4):336-341.
    [27]孙向伟,王晓娟,陈牧,等.生态环境因子对AM真菌孢子形成与分布的作用机制[J].草业学报,2011,20(1):214-221.
    [28]郭欢,曾广萍,刘红玲,等.丛枝菌根真菌对红花根围微生物多样性特征的影响[J].微生物学通报,2013,40(7):1214-1224.
    [29]Bagayoko M,Buerkert A,Lung G,et al.Cereal legume rotation effects on cereal growth in Sudano-Sahelian West Africa:soil mineral nitrogen,mycorrhizae and nematodes[J].Plant and Soil,2000,218(1):103-116.
    [30]Rillig M C,Mummey D L.Mycorrhizas and soil structure[J].The New phytologist,2006,171(1):41-53.
    [31]郑舜怡,郭世荣,张钰,等.丛枝菌根真菌对辣椒光合特性及根际微生物多样性和酶活性的影响[J].西北植物学报,2014,34(4):800-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700