Z机制光催化三元复合材料RGO/WO_3/g-C_3N_4结构及光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure and Photocatalytic Activities of RGO/WO_3/g-C_3N_4 Ternary Photocatalytic Composite with Z-scheme
  • 作者:赵馨睿 ; 王铮 ; 杜娟 ; 李晓宇
  • 英文作者:ZHAO Xin-rui;WANG Zheng;DU Juan;LI Xiao-yu;College of Geology and Environment,Xi'an University of Science and Technology;Xi'an Modern Chemistry Research Institute;
  • 关键词:光催化复合材料 ; 一步水热法 ; 还原氧化石墨烯 ; WO_3 ; g-C_3N_4 ; Z机制
  • 英文关键词:photocatalytic composite;;one-step hydrothermal method;;reduced graphene oxide;;WO_3;;g-C_3N_4;;Z-scheme system
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:西安科技大学地质与环境学院;西安近代化学研究所;
  • 出版日期:2019-04-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.246
  • 基金:国家自然科学基金(41772166,51704230)
  • 语种:中文;
  • 页:RGJT201904006
  • 页数:9
  • CN:04
  • ISSN:11-2637/O7
  • 分类号:37-45
摘要
以一步水热法合成了还原氧化石墨烯/三氧化钨/石墨相氮化碳(RGO/WO_3/g-C_3N_4)三元光催化复合材料,并对其结构、形貌及光电性能进行了表征。以罗丹明B(RhB)和盐酸四环素(TC-HCl)为降解目标物,评价了三元复合材料的光催化性能。基于自由基捕获实验和光催化反应结果分析了三元复合材料的光催化机制。结果表明:三元光催化复合材料中,三种物质紧密接触形成异质结构,与WO3和g-C_3N_4单体及其二元复合材料相比,其可见吸收光谱有明显的红移,具有更低的光致发光光谱强度。复合材料有效的改善了电子-空穴对的复合,具有很好的光催化活性,最优配比组成的样品为0. 2%RGO/WO_3/g-C_3N_4,光照240 min后,对Rh B降解效果高达97. 58%,其光催化效果优于WO_3、g-C_3N_4、RGO/g-C_3N_4和WO_3/g-C_3N_4。催化降解过程中的主要活性物种是·O_2~-,其次是h~+、·OH,反应过程中半导体的电子转移机制符合Z机制。
        A reduced graphene oxide/tungsten trioxide/graphitic carbon nitride( RGO/WO_3/g-C_3N_4)ternary photocatalytic composite was prepared through one-step hydrothermal method. The structure,morphology and optical properties of the as-prepared samples were characterized. The photodecomposition performance was evaluated through photocatalytic degradation of Rhodamine B( Rh B) and Tetracycline Hydrochloride( TC-HCl) under Xenon light illumination. The experiments of active species trapping and photocatalytic reactions were performed to investigate its photocatalytic mechanism. The results show heterojunction structure was built by close contaction of three precursors in ternary. Compared with WO_3,g-C_3N_4 and their binary composites, slight red shift of visible absorption spectrum and low photoluminescence intensity were observed which indicated that the composite had noteworthy improvement in separation of electron-hole pairs. The ternary composite has excellent photocatalytic activity. The removal rate of RhB was up to 97. 58% when 0. 2% RGO/g-C_3N_4/WO_3 with the optimized content was used and 240 min illumination,which was better than that of WO_3,g-C_3N_4,RGO/g-C_3N_4 and WO_3/g-C_3N_4. The main active species in the process was ·O_2~-,h~+ and ·OH. It is speculated that the electron transfer between semiconductors acted up to the Z-mechanism.
引文
[1]李海涛,王茗.g-C3N4-W18O49复合光催化剂的制备及其光催化机理研究[J].人工晶体学报,2018,47(1):86-91+96.
    [2]朱晓东,王尘茜,裴玲秀,等.Ag修饰Ti O2的制备及其在模拟太阳光下的光催化性能研究[J].人工晶体学报,2018,47(6):1136-1141+1147.
    [3]Liu J,Huang J,Dontosova D,et al.Facile Synthesis of Carbon Nitride Micro-/Nanoclusters with Photocatalytic Activity for Hydrogen Evolution[J].RSC Advances,2013,3(45):22988-22993.
    [4]Zhao J N,Ma L,Wang H Y,et al.Novel Band Gap-Tunable K-Na Co-Doped Graphitic Carbon Nitride Prepared by Molten Salt Method[J].Applied Surface Science,2015,332:625-630.
    [5]Cheng N Y,Tian J Q,Liu Q,et al.Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets:Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants[J].Acs Applied Materials&Interfaces,2013,5(15):6815-6819.
    [6]许海峰,金绍维.Ti O2/RGO复合材料的制备与光催化性能研究[J].人工晶体学报,2015,44(5):1284-1288.
    [7]Chen Q,Hou H J,Zhang D W,et al.Enhanced Visible-Light Driven Photocatalytic Activity of Hybrid ZnO/g-C3N4by High Performance Ball Milling[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,305:1-9.
    [8]Shao L Q,Jiang D L,Xiao P,et al.Enhancement of g-C3N4Nanosheets Photocatalysis by Synergistic Interaction of ZnS Microsphere and RGOInducing Multistep Charge Transfer[J].Applied Catalysis B:Environmental,2016,198:200-210.
    [9]Mao J,Zhang Q,Li P W,et al.Geometric Architecture Design of Ternary Composites Based on Dispersive WO3Nanowires for Enhanced VisibleLight-Driven Activity of Refractory Pollutant Degradation[J].Chemical Engineering Journal,2018,334:2568-2578.
    [10]Bao Y C,Chen K Z,et al.Novel Z-Scheme BiOBr/Reduced Graphene Oxide/Protonated g-C3N4Photocatalyst:Synthesis,Characterization,Visible Light Photocatalytic Activity and Mechanism[J].Applied Surface Science,2018,437:51-61.
    [11]Ma D,Wu J,Gao M C,et al.Fabrication of Z-Scheme g-C3N4/RGO/Bi2WO6Photocatalyst with Enhanced Visible-Light Photocatalytic Activity[J].Chemical Engineering Journal,2016,290:136-146.
    [12]Yu J G,Wang S H,Low J X,et al.Enhanced Photocatalytic Performance of Direct Z-Scheme g-C3N4-Ti O2Photocatalysts for the Decomposition of Formaldehyde in air[J].Physical Chemistry Chemical Physics,2013,15(39):16883-16890.
    [13]Chen L X,He F,Zhao N Q,et al.Fabrication of 3D Quasi-Hierarchical Z-Scheme RGO-Fe2O3-Mo S2Nanoheterostructures for Highly Enhanced Visible-Light-Driven Photocatalytic Degradation[J].Applied Surface Science,2017,420:669-680.
    [14]Tada H,Mitsui T,Kiyonaga T,et al.All-Solid-State Z-Scheme in CdS-Au-TiO2Three-Component Nanojunction System[J].Nature materials,2006,5(10):782.
    [15]Kato H,Saski Y,Iwase A,et al.Role of Iron Ion Electron Mediator on Photocatalytic Overall Water Splitting under Visible Light Irradiation Using Z-Scheme Systems[J].Bulletin of the Chemical Society of Japan,2007,80(12):2457-2464.
    [16]Mei Y,Hu S Z,Li F Y,et al.The Influence of Preparation Method on the Photocatalytic Performance of g-C3N4/WO3Composite Photocatalyst[J].Ceramics International,2014,40(8):11963-11969.
    [17]Zhao J L,Ji Z Y,Shen X P,et al.Facile Synthesis of WO3Nanorods/g-C3N4Composites with Enhanced Photocatalytic Activity[J].Ceramics International,2015,41(4):5600-5606.
    [18]Ma D,Wu J,Gao M,et al.Enhanced Debromination and Degradation of 2,4-Dibromophenol by an Z-Scheme Bi2Mo O6/CNTs/g-C3N4Visible Light Photocatalyst[J].Chemical Engineering Journal,2017,316:461-470.
    [19]Wu J J,Miao X L,Shen X P,et al.An All-Solid-State Z-Scheme g-C3N4/Ag/Ag3VO4Photocatalyst with Enhanced Visible-Light Photocatalytic Performance[J].European Journal of Inorganic Chemistry,2017.21:2845-2853.
    [20]Miao X L,Shen X P,Wu J J,et al.Fabrication of an All Solid Z-Scheme Photocatalyst g-C3N4/GO/Ag Br with Enhanced Visible Light Photocatalytic Activity[J].Applied Catalysis A:General,2017,539:104-113.
    [21]Jo W K,Selvamn C S.Enhanced Visible Light-Driven Photocatalytic Performance of Zn O-g-C3N4Coupled with Graphene Oxide as a Novel Ternary Nanocomposite[J].Journal of Hazardous Materials,2015,299:462-470.
    [22]Jiang D L,Xiao P,Shao L Q,et al.RGO-Promoted All-Solid-State g-C3N4/BiVO4Z-Scheme Heterostructure with Enhanced Photocatalytic Activity toward the Degradation of Antibiotics[J].Industrial&Engineering Chemistry Research,2017,56.31:8823-8832.
    [23]Katsumata H,Tachi Y,Suzuki T,et al.Z-Scheme Photocatalytic Hydrogen Production over WO3/g-C3N4Composite Photocatalysts[J].RSCAdvances,2014,4(41):21405-21409.
    [24]Xiao T T,Tang Z,Yang Y,et al.In Situ Construction of Hierarchical WO3/g-C3N4Composite Hollow Microspheres as a Z-Scheme Photocatalyst for the Degradation of Antibiotics[J].Applied Catalysis B:Environmental,2018,220:417-428.
    [25]Liang Z Y,Wei J X,Wang X,et al.Elegant Z-Scheme-Dictated g-C3N4Enwrapped WO3Superstructures:a Multifarious Platform for Versatile Photoredox Catalysis[J].Journal of Materials Chemistry A,2017,5(30):15601-15612.
    [26]Zhao G X,Huang X B,Fina F,et al.Facile Structure Design Based on C3N4for Mediator-Free Z-Scheme Water Splitting under Visible Light[J].Catalysis Science&Technology,2015,5(6):3416-3422.
    [27]Vinoth R,Karthik P,Muthamizhchelvan C,et al.Carrier Separation and Charge Transport Characteristics of Reduced Graphene Oxide Supported Visible-Light Active Photocatalysts[J].Physical Chemistry Chemical Physics,2016,18.7:5179-5191.
    [28]Aslam I,Cao C B,Tanveer M,et al.Synergistic Effect between WO3and g-C3N4towards Efficient Visible-Light-Driven Photocatalytic Performance[J].New Journal of Chemistry,2014,38(11):5462-5469.
    [29]Song C J,Fan M S,Shi W D,et al.High-Performance for Hydrogen Evolution and Pollutant Degradation of Reduced Graphene Oxide/Two-Phase g-C3N4Heterojunction Photocatalysts[J].Environmental Science and Pollution Research,2018,25(15):14486-14498.
    [30]Dai K,Lu L H,Liu Q,et al.Sonication Assisted Preparation of Graphene Oxide/Graphitic C3N4Nanosheet Hybrid with Reinforced Photocurrent for Photocatalyst Applications[J].Dalton Transactions,2014,43(17):6295-6299.
    [31]Yu W L,Chen J X,Shang T T,et al.Direct Z-scheme g-C3N4/WO3Photocatalyst with Atomically Defined Junction for H2Production[J].Applied Catalysis B:Environmental,2017,219:693-704.
    [32]Xiang Q J,Yu J G.Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4Composites[J].The Journal of Physical Chemistry C,2011,115(15):7355-7363.
    [33]Wang L,Ding J,Chai Y Y,et al.CeO2Nanorod/g-C3N4/N-RGO Composite:Enhanced Visible-Light-Driven Photocatalytic Performance and the Role of N-RGO as Electronic Transfer media[J].Dalton Transactions,2015,44(24):11223-11234.
    [34]尹竞,廖高祖,朱冬韵,等.g-C3N4/石墨烯复合材料的制备及光催化活性的研究[J].中国环境科学,2016,36(3):735-740.
    [35]施珊.石墨相氮化碳复合光催化剂的制备及光催化性能的研究[D].南京:南京航空航天大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700