基于小尺度高原鼢鼠种群遗传结构研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Small-scale genetic structural analysis of plateau zokor(Eospalax baileyi)
  • 作者:刘丽 ; 王贵珍 ; 周延山 ; 楚彬 ; 马素洁 ; 姬程鹏 ; 田永亮 ; 花立民
  • 英文作者:LIU Li;WANG Gui-zhen;ZHOU Yan-shan;CHU Bin;MA Su-jie;JI Cheng-peng;TIAN Yong-liang;HUA Li-min;College of Grassland Science,Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education;Grassland Biodiversity Research Center of Gansu Agricultural University-New Zealand Massey University;
  • 关键词:高原鼢鼠 ; 微卫星 ; 遗传多样性 ; 遗传结构
  • 英文关键词:plateau zokor;;microsatellite;;genetic diversity;;genetic structure
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:甘肃农业大学草业学院教育部草业生态系统重点实验室甘肃农业大学-新西兰梅西大学草地多样性研究中心;
  • 出版日期:2018-01-20
  • 出版单位:草业学报
  • 年:2018
  • 期:v.27;No.150
  • 基金:国家重点研发计划(2017YFC0504800);; 国家自然基金项目(31460635)资助
  • 语种:中文;
  • 页:CYXB201801014
  • 页数:8
  • CN:01
  • ISSN:62-1105/S
  • 分类号:126-133
摘要
高原鼢鼠是青藏高原特有的地下啮齿动物,研究其种群遗传结构对于了解扩散、基因交流等方面具有重要意义。本研究利用微卫星分子标记技术,分析祁连山东段高寒草甸区小尺度下4个高原鼢鼠种群的遗传多样性和遗传结构特点。结果表明:1)4个种群有效等位基因(Ne)为83.6,种群平均观测杂合度(Ho)最高为0.32,平均期望杂合度(He)最高为0.50,平均多态信息含量(PIC)为0.40,遗传多态性处于中等水平。2)种群遗传结构推导分析结果为4个种群被分成2组,MYT(马营滩种群)为一组,XNG(下南泥沟种群)、MYR(马营河东边种群)、MYL(马营河西边种群)为一组。3)试验区高原鼢鼠种群间近交系数(FST)都大于0.05,种群间的基因流值(Nm)都小于1,特殊岛状栖息地限制了高原鼢鼠种群基因流,河流和公路可能对种群内和种群间个体交流有阻碍作用。
        The plateau zokor is a subterranean rodent that is one of the unique native animals living on the Tibetan Plateau.Research on the genetic structure of zokor will be useful to understand its patterns of dispersal and genetic exchange.In this study,we focused on the genetic structure of four plateau zokor populations in the alpine meadow in the eastern Qilian Mountains in northwest China.We used microsatellite marker technology to study the genetic diversity and structure of these populations.The effective alleles(Ne)value was 83.6 in the four different geographic populations.The highest average observed heterozygosity(Ho)value was 0.32,and the expected heterozygosity(He)value was 0.50.The average polymorphism information content(PIC)value was 0.40,indicating that plateau zokor have medium-level genetic diversity.A genetic structure analysis divided the four populations into two groups;one group containing the MYT(Mayingtan)population;and the other group containing XNG(Xianannigou),MYR,and MYL populations(west and east of the Maying river,respectively).The genetic distance(FST)values were greater than 0.05 and gene flow values were lower than 1 in the four geographical populations.These results indicated that the island-type habitat has limited genetic exchange among plateau zokor populations.Rivers and roads may have restricted the movement and exchange of individuals among and within populations.
引文
[1]Sun H L,Zheng D,Yao T D,et al.Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Journal of Geographical Sciences,2012,67(1):3-12.孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设.地理学报,2012,67(1):3-12.
    [2]Zhou X R,Guo Z G,Guo X H.The role of plateau pika and plateau zokor in alpine meadow.Pratacultural Science,2010,27(5):38-44.周雪荣,郭正刚,郭兴华.高原鼠兔和高原鼢鼠在高寒草甸中的作用.草业科学,2010,27(5):38-44.
    [3]Fan N C,Wang Q Y,Zhou W Y,et al.The relationship between plateau zokor populations and vegetation damage.Essays of Alpine Meadow Ecosystem International Academic Discussion.Beijing:Science Press,1988:109-115.樊乃昌,王权业,周文扬,等.高原鼢鼠种群数量与植被破坏程度的关系.高寒草甸生态系统国际学术讨论文集.北京:科学出版社,1988:109-115.
    [4]Smith A T,Foggin J M.The plateau pika(Ochotona curzoniae)is a keystone species for biodiversity on the Tibetan plateau.Animal Conservation,1999,(2):235-240.
    [5]Golley F B,Petrusewicz K,Ryszkowski L.Smallmam-mals:their productivity and population dynamics.International Biological Programme.England:Cambridge University Press,1975:1-23.
    [6]Jones C G,Lawton J H,Shachak M.Organisms as ecosystem engineers.Oikos,1994,69:373-386.
    [7]Zhang F M,Ge S.Data analysis in population genetics I.analysis of RAPD data with AMOVA.Biodiversity Science,2002,10(4):438-444.张富民,葛颂.种群遗传学研究中的数据处理方法Ⅰ.RAPD数据的AMOVA分析.生物多样性,2002,10(4):438-444.
    [8]Chen L Z.Biodiversity Situation and It’s Conservation Measure in China.Beijing:Science Press,1993:99-113.陈灵芝.中国的生物多样性现状及其保护对策.北京:科学出版社,1993:99-113.
    [9]Hedrick P W.Genetics of Populations.2nd ed.Massachusetts:Jones and Bartlett Publishers,2000:1-61.
    [10]Zhang Y M,Liu J K.Effects of plateau zokor(Myospalax fontanierii)on plant community and soil in an alpine meadow.Journal of Mammalogy,2003,84:644-651.
    [11]Tang L Z,Yu L,Wang J J,et al.Gene flows of eospalax baileyi geographical populations.Journal of Anhui Agricultural Sciences,2010,(10):5123-5124.唐利洲,于龙,王俊杰,等.高原鼢鼠种群间基因流研究.安徽农业科学,2010,(10):5123-5124.
    [12]Cai Z Y,Zhang T Z,Ci H X,et al.Mitochondrial phylogeography and genetic diversity of plateau zokor(Myospalax baileyi).Acta Theriologica Sinica,2007,27(2):130-137.蔡振媛,张同作,慈海鑫,等.高原鼢鼠线粒体谱系地理学和遗传多样性.兽类学报,2007,27(2):130-137.
    [13]Mora M S,Mapelli F J,Gaggiotti O E,et al.Dispersal and population structure at different spatial scales in the subterranean rodent(Ctenomys australis).BMC Genetics,2010,11(9):1-14.
    [14]Su J H,Ji W H,Howitt R,et al.Novel microsatellite markers obtained from Gansu zokor(Eospalax cansus)and crossspecies amplification in Plateau zokor(Eospalax baileyi).Biochemical Systematics and Ecology,2014,57:128-132.
    [15]Yeh F C,Boyle T.POPGENE version 1.3-Microsoft Windows-based freeware for population genetic analysis.[2016-06-24].https://sites.ualberta.ca/~fyeh/popgene.pdf.html.
    [16]Piggott M P,Banks S C,Taylor A C.Population structure of brush-tailed rock-wallaby(Petrogale penicillata)colonies inferred from analysis of faecal DNA.Molecular Ecology,2006,15(1):93-105.
    [17]Favre L,Balloux F,Goudet J,et al.Female-biased dispersal in the monogamous mammal Crocidura russula:evidence from field data and microsatellite patterns.Biological Sciences,1997,264(1):127-132.
    [18]Botstein D,White R L,Skolnick M.Construction of a genetic linkage map in man using restriction fragment length polymorphism.American Journal of Human Genetics,1980,32(3):314-331.
    [19]Falush D,Stephens M,Pritchard J K.Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies.Genetics,2003,164(4):1567-1587.
    [20]Rosenberg N A.Distruct:aprogram for the graphical display of population structure.Molecular Ecology Notes,2004,4:137-138.
    [21]Rossiter S J,Benda P,Dietz C,et al.Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites:implications for population history,taxonomy and conservation.Molecular Ecology,2007,16(22):4699-4714.
    [22]Evanno G,Regnaut S,Goudet J.Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study.Molecular Ecology,2005,14(8):2611-2620.
    [23]Wright.Evolution and the Genetics of Populations.America:University of Chicago Press,1978.
    [24]Jie X M,Yun J F.Genetic diversity and detective methods of plant.Grassland of China,2000,(6):51-59.解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000,(6):51-59.
    [25]Masatoshi N,Sudhir K.Molecular Evolution and Phylogeny.Lv B Z,Zhong Y,Gao L P,translate.Beijing:Higher Education Press,2002:204-207.Masatoshi N,Sudhir K.分子进化与系统发育.吕宝忠,钟扬,高莉萍,译.北京:高等教育出版社,2002:204-207.
    [26]Su J H.Study on Population Genetic Structure of Two Kinds of Typical Native Animals in the Eastern Qinghai-Tibetan Plateau.Lanzhou:Agricultural University,2014.苏军虎.青藏高原东缘两类典型土著动物种群遗传结构分析.兰州:甘肃农业大学,2014.
    [27]Wei W H,Wang Q Y,Zhou W Y,et al.The population dynamics and dispersal of plateau zokor after removing.Acta Theriologica Sinica,1997,17(1):53-61.魏万红,王权业,周文扬,等.灭鼠干扰后高原鼢鼠的种群动态与扩散.兽类学报,1997,17(1):53-61.
    [28]Duffy J E.Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential.Marine Biology,1993,116(3):459-470.
    [29]Duran S,Palacín C,Becerro M A,et al.Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus(Echinodermata,Echinoidea).Molecular Ecology,2004,13(11):3317-3328.
    [30]Duran S,Pascual M,Estoup A,et al.Strong population structure in the marine sponge Crambe crambe(Poecilosclerida)as revealed by microsatellite markers.Molecular Ecology,2004,13(3):511-522.
    [31]Quan Y C,Li D Y,Cao D C,et al.Population genetic variation and structure analysis on five populations of mirror carp Cyprinus carpio L.using microsatellites.Hereditas,2006,28(12):1541-1548.全迎春,李大宇,曹鼎辰,等.微卫星DNA标记探讨镜鲤的种群结构与遗传变异.遗传,2006,28(12):1541-1548.
    [32]Hewitt G M.Genetic consequences of climatic oscillations in the Quaternary.Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,2004,359:183-195.
    [33]Mora M S,Cutrera A P,Lessa E P,et al.Phylogeography and population genetic structure of the Talas tuco-tuco(Ctenomys talarum):integrating demographic and habitat histories.Journal of Mammalogy,2013,94(2):459-476.
    [34]Van Daele P,Verheyen E,Corkery I,et al.Trends in skull morphology in relation to differential molecular evolution in African mole-rats of the chromosomally hyperdivers genus Fukomys(Bathyergidae,Rodentia)from the Zambezian region.Italian Journal of Mammalogy,2006,(Suppl 1):143.
    [35]Brown G G,Gadaleta G,Pepe G,et al.Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA.Journal of Molecular Biology,1986,192(3):503-511.
    [36]Jianping S U.Energy cost of foraging and optimal foraging in the fossorial rodent(Myospalax baileyI).Acta Theriologica Sinica,1992,2:4.
    [37]Huenneke L F.Ecological implications of genetic variation in plant populations//Falk D A,Holsinger K E.Genetics and Conservation of Rare Plants.New York:Oxford University Press,1991:31-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700