高频感应辅助SHS制备TiC基平面复合涂层工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:TiC-based Flat Composite Coating by High-frequency Assisted SHS Technology
  • 作者:杨家豪 ; 潘成刚 ; 蔡文菁 ; 张伟喆 ; 周宛晴 ; 刘笃笃
  • 英文作者:YANG Jiahao;PAN Chenggang;CAI Wenjing;ZHANG Weizhe;ZHOU Wanqing;LIU Dudu;The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology;School of Materials and Metallurgy, Wuhan University of Science and Technology;
  • 关键词:SHS ; TiC基 ; 高频感应 ; 平面涂层
  • 英文关键词:SHS;;TiC-based;;high-frequency induction;;flat coating
  • 中文刊名:ZZJS
  • 英文刊名:Foundry Technology
  • 机构:武汉科技大学省部共建耐火材料与冶金国家重点实验室;武汉科技大学材料与冶金学院;
  • 出版日期:2018-09-18
  • 出版单位:铸造技术
  • 年:2018
  • 期:v.39;No.318
  • 基金:国家自然科学基金资助项目(51375353);; 大学生科技创新基金资助项目(17ZRA004)
  • 语种:中文;
  • 页:ZZJS201809021
  • 页数:7
  • CN:09
  • ISSN:61-1134/TG
  • 分类号:72-78
摘要
采用高频感应辅助SHS技术在5CrNiMo钢基体上制备了TiC基平面复合涂层,分析了加热电流、保压时间、金属粘结相对涂层的微观组织的影响。结果表明,随着加热电流增大,涂层内部的孔洞数量增多且尺寸也逐渐变大,Ni和TiC相分布也越来越均匀,试验最佳的加热电流为600A。随着保压时间的延长,涂层的孔洞数量逐渐减少,而且孔洞的尺寸也渐渐变小,试验最佳保压时间为40s。Ti-C-Ni体系的绝热温度高于Ti-C-Fe体系200K左右,Ti-C-Ni体系的界面结合良好,涂层孔洞少。试验最佳体系为Ti-C-Ni。
        TiC-based composite flat coatings on 5 CrNiMo steel surface were prepared by high-frequency assisted self-propagating high temperature synthesis technology. The effects of different process parameters(heating current,pressure holding time and metal bonding phase) on the microstructure of the coatings were analyzed. The results show that the number and size of pores in the coating increase gradually with the increase of the heating current. The distribution of Ni and TiC is more and more uniform, and the optimum heating current is 600 A. As the pressure holding time lengthening, the number and size of pores in the coating gradually decreases, and the best pressure holding time of the test is 40 s. The adiabatic temperature of Ti-C-Ni system is about 200 K higher than that of Ti-C-Fe system. The interfacial bonding of Ti-C-Ni system is good, and the pores in the coating are few. The best test system is Ti-C-Ni.
引文
[1]肖国庆,范群成,顾美转,等. TiC-Al金属陶瓷自蔓延高温合成中的显微组织转变[J].中国有色金属学报,2004,14(6):2096-2101.
    [2] Levashov E A, Mukasyan A S, Rogachev A S, et al. Self-propagating high-temperature synthesis of advanced materials and coatings[J]. Metallurgical Reviews, 2016, 62(4):203-239.
    [3]李文戈,周和平,陈克新,等.钢板表面燃烧合成的金属陶瓷复合涂层[J].中国有色金属学报,2003,13(4):968-973.
    [4]张勇,秦思贵. SHS+HP法制备铝基TiC陶瓷涂层性能研究[J].装甲兵工程学院学报,2013,27(3):88-91.
    [5]乔光利,秦思贵,方志坚,等. SHS+HP法制备TiC基陶瓷-钢复合板性能研究[J].兵器材料科学与工程,2015,38(2):74-77.
    [6]潘成刚,赵川翔,刘笃笃,等. SHS/PHIP法压铸模表面制备TiC/Ni功能梯度涂层研究[J].特种铸造及有色合金,2017,37(7):743-746.
    [7]潘成刚,冯斯琦,赵川翔,等.预热温度对自蔓延TiC/Ni功能梯度涂层的影响[J].特种铸造及有色合金,2017,37(11):1170-1175.
    [8]赵川翔,潘成刚,吴竹,等.自蔓延TiC/Ni功能梯度涂层热疲劳性能研究[J].铸造技术,2018,39(1):189-193.
    [9] Dong Y O, Kim H C, Jin K Y, et al. One step synthesis of dense MoSi2-SiC composite by high-frequency induction heated combustion and its mechanical properties[J]. Journal of Alloys&Compounds, 2005, 395(1):174-180.
    [10]张增志.高效快速感应熔涂技术[M].北京:冶金工业出版社,2001.
    [11]江建利,张幸红,韩杰才. TiC-Ni-Mo复合材料的燃烧合成研究[J].无机材料学报,1999,14(3):443-448.
    [12]石建稳,王引真,李小龙.自蔓延高温合成TiC-Ni金属陶瓷的热力学编程计算与分析[J].材料热处理学报,2005,26(1):93-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700