SiCl_4热氢化制备SiHCl_3过程的模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation Research on the Preparation of SiHCl3 by Thermal Hydrogenation of SiCl4
  • 作者:罗旭峰 ; 陈昶 ; 贾曦 ; 熊芳
  • 英文作者:Luo Xufeng;Chen Chang;Jia Xi;Xiong Fang;Faculty of Physics and Electronic Engineering, Leshan Normal University;Faculty of New Energy Engineering, Leshan Vocational and Technical College;
  • 关键词:热氢化 ; 四氯化硅 ; 三氯化氢硅 ; 尾气骤冷 ; 数值模拟
  • 英文关键词:thermal hydrogenation;;silicon tetrachloride;;trichlorosilane;;vent gas quenching;;numerical simulation
  • 中文刊名:HXFY
  • 英文刊名:Chemical Reaction Engineering and Technology
  • 机构:乐山师范学院物理与电子工程学院;乐山职业技术学院新能源工程系;
  • 出版日期:2018-04-25
  • 出版单位:化学反应工程与工艺
  • 年:2018
  • 期:v.34
  • 语种:中文;
  • 页:HXFY201802012
  • 页数:8
  • CN:02
  • ISSN:33-1087/TQ
  • 分类号:76-83
摘要
为了考察Si Cl_4(STC)-H2体系下的热氢化反应过程,采用完全扰动反应器(PSR)模型与Chemkin模拟软件,耦合了相关热力学与反应机理数据,对不同反应温度、反应压力、反应配比条件进行了模拟计算,并进一步模拟考察了停留时间与反应尾气急速冷却条件,经统计对比揭示了以上因素对Si Cl_4一次转化率的影响。结果表明:反应温度影响优先级为最高,只有在合适的反应温度区间内才能使Si HCl_3(TCS)产生并维持理想的摩尔分率;Si Cl_4一次转化率均随反应压力与反应配比增加而增加,但在最优区间内才有参考价值,增长幅度在最优值后趋缓;Si Cl_4一次转化率在最优停留时间前期增长显著,后期基本无变化;反应尾气则需要在较低温度与较短时间内完成骤冷过程方可使Si Cl_4一次转化率不发生较为明显的降低。得出结论为Si Cl_4通过热氢化制备Si HCl_3过程最优操作条件为反应温度1 200℃,反应压力0.6 MPa,反应配比n(H2):n(STC)为4,在此条件下,Si Cl_4一次转化率为20.91%;最优停留时间为0.01 s,反应尾气最优骤冷条件为在0.001 s内冷却至750℃。
        To investigate the thermal hydrogenation process of Si Cl4(STC)-H2 system, the complete perturbation reactor(PSR) model and Chemkin simulation software coupled with the relevant thermodynamics, and reaction mechanism data were used to simulate the reactions conditions at different reaction temperature, reaction pressure and the reaction feed ratios. The residence time and the rapid cooling conditions of the reaction vent gas were further simulated. The influence of the above factors on the primary conversion rate of Si Cl4 was revealed by statistical comparison. The results showed that the reaction temperature had the highest priority. Only in the proper reaction temperature range can Si HCl3(TCS) be produced and the desired molar fraction maintained. The primary conversion rate of Si Cl4 increased with the increase of reaction pressure and feed ratio. However, only in the optimal range, there was reference value, and the growth rate slowed down after the optimal value. The primary conversion rate of Si Cl4 increased significantly in the early stage of optimal residence time, and there was no change in the later stage. The reaction vent gas needed to complete the quenching process at a lower temperature within a shorter time so that the primary conversion rate of Si Cl4 would not decrease significantly. It was concluded that the optimal operating conditions for the preparation of Si HCl3 by thermal hydrogenation of Si Cl4 were as follows: reaction temperature 1 200 ℃, reaction pressure 0.6 MPa, and the reaction feed molar ratio of H2 to STC 4. Under these conditions, the primary conversion rate of Si Cl4 was 20.91%, the optimal residence time was 0.01 s, and the optimal quenching condition of reaction vent gas was cooling to 750 ℃ within 0.001 s.
引文
[1]万烨,汤传斌,肖荣辉,等.四氯化硅氢化生产三氯氢硅技术研究[J].有色冶金节能,2010,26(6):30-32.Wan Ye,Tang Chuanbin,Xiao Ronghui,et al.Studies on the production of trichlorosilane by hydrogenation of silicon tetrachloride[J].Chinese Nonferrous Metallurgy,2010,26(6):30-32.
    [2]侯彦青,谢刚,陶东平,等.Si Cl4氢化转化为Si HCl3过程的热力学[J].中国有色金属学报,2011,21(12):3202-3210.Hou Yanqing,Xie Gang,Tao Dongping,et al.Study on the thermodynamics of hydrogenation of Si Cl4 to Si HCl3[J].Chinese Journal of Nonferrous Metals,2011,21(12):3202-3210.
    [3]苗军舰,丘克强,顾珩,等.西门子体系中Si HCl3和Si Cl4的热力学行为[J].中国有色金属学报,2008,18(10):1937-1944.Miao Junjian,Qiu Keqiang,Gu Heng,et al.Thermodynamic behavior of Si HCl3 and Si Cl4 in Siemens system[J].Chinese Journal of Nonferrous Metals,2008,18(10):1937-1944.
    [4]蔡美霞.多晶硅氢化炉的多场仿真及其优化[D].中南大学,2013.
    [5]Glarborg P,Kee R J,Grcar J F,et al.PSR:A FORTRAN Program for Modeling Well-Stirred Reactors[R].SAND86-8209,1986.
    [6]Mcbride B J,Zehe M J,Gordon S.NASA glenn coefficients for calculating thermodynamic properties of individual species[J].NASA report TP-2002-211556,2002.
    [7]Ravasio S,Masi M,Cavallotti C.Analysis of the gas phase reactivity of chlorosilanes[J].Journal of Physical Chemistry A,2013,117(25):5221-31.
    [8]Ge Y,Gordon M S,Battaglia F,et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase.3.Reaction rate constant calculations[J].Journal of Physical Chemistry A,2010,114(6):2384.
    [9]Wittbrodt J M,Schlegel H B.An ab initio study of the thermal decomposition of dichlorosilane[J].Chemical Physics Letters,1997,265(3):527-531.
    [10]Ivanov V M,Trubitsin Y V.Approaches to hydrogenation of silicon tetrachloride in polysilicon manufacture[J].Russian Microelectronics,2011,40(8):559-561.
    [11]Knoth J F,Eberle H J,Rüdinger C.Process for converting silicon tetrachloride to trichlorosilane:,EP 2746222 A1[P].2016-10-12.
    [12]Weigert W,Meyer-Simon E,Schwarz R.Process for the production of chlorosilanes:US,4217334 A[P].1980-08-12.
    [13]C·吕丁格,H-J·埃贝勒,N·加西亚-阿隆索.通过四氯硅烷的热氢化反应制备三氯硅烷的方法:CN 101107197 A[P].2008-01-16.
    [14]水岛一树,漆原诚.三氯硅烷的制备方法和三氯硅烷的制备装置:CN 101479193 A[P].2009-07-08.
    [15]Kunioshi N,Moriyama Y,Fuwa A.Kinetics of the conversion of silicon tetrachloride into trichlorosilane obtained through the temperature control along a plug-flow reactor[J].International Journal of Chemical Kinetics,2016,48(1):45-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700