某石油污染地下水溶解性无机碳低异常的微生物地球化学成因探析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Abnormally low dissolved inorganic carbon in petroleum contaminated groundwater caused by microbiological geochemistry
  • 作者:宁卓 ; 蔡萍萍 ; 张敏 ; 郭彩娟 ; 史婵 ; 何泽
  • 英文作者:NING Zhuo;CAI Pingping;ZHANG Min;GUO Caijuan;SHI Chan;HE Ze;Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences;Chinese Academy of Geological Sciences, China University of Geosciences in Beijing;Key Laboratory of Groundwater Remediation of Hebei Province;School of Resources and Enviromental Engineering, HeFei University of Technology;Beijing Weiming Qingyuan Environmental Protection Technology Co., Ltd.;
  • 关键词:石油烃污染 ; 地下水 ; 溶解性有机碳 ; 16S ; rRNA ; 微生物作用
  • 英文关键词:petroleum contamination;;groundwater;;dissolved inorganic carbon;;16S rRNA;;microorganisms
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:中国地质科学院水文地质环境地质研究所;中国地质大学(北京)中国地质科学院;河北省地下水污染机理与修复重点实验室;合肥工业大学资源与环境工程学院;北京未名清源环保科技有限公司;
  • 出版日期:2018-11-07 15:12
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.41602261);; 中国地质科学院基本科研业务费专项经费(No.SK201702,SK201604,SK201614);; 河北省自然科学基金(No.D2016504021)
  • 语种:中文;
  • 页:HJXX201904013
  • 页数:8
  • CN:04
  • ISSN:11-1843/X
  • 分类号:130-137
摘要
微生物地球化学作用往往导致石油污染场地地下水中溶解性无机碳(DIC)升高,而华北某石油污染场地地下水DIC低异常明显.为究其机理,在水文地球化学分析和16S rRNA基因高通量测序基础上,结合含水层结构及流场特征,剖析了地下水水化学和微生物两方面作用,辨识了地下水中DIC变异的主导因素,揭示了其中的生物地球化学作用的机理,发现该场地地下水DIC低异常可能与地下水中具有较高浓度钙镁离子和较高活性自养微生物有关,自养微生物代谢及诱导产生碳酸盐岩沉淀作用极可能是该场地地下水中DIC低异常的成因.推测机理为:Hydrogenophaga和Sedimentibacter等菌属微生物在氢化酶的作用下产氢气,Hydrogenophaga、Pseudomonas、Pseudoxanthomonas、Polynucleobacter等固碳微生物和产甲烷微生物利用氢气作为能源,将DIC合成有机碳,并产生碱性微环境,促使Ca~(2+)和Mg~(2+)与DIC反应形成碳酸钙镁沉淀.
        At petroleum contaminated sites, the interplay of microbiological and geochemical processes often causes the elevated level of dissolved inorganic carbon(DIC) in groundwater. However, abnormally low DIC has been found in a petroleum contaminated site located at North China Plain. To understand the underlying mechanism, we conducted a high throughput sequencing of 16 S rRNA gene and a hydrogeochemical analysis, and examined the characteristics of local aquifer and groundwater flow to identify the factors and geochemical and microbiological mechanism dominating the variation in DIC levels. The results show that low DIC in the study site may be attributed to complex geochemical and microbiological processes associated with high concentration of Ca~(2+) and Mg~(2+) ions and active autotrophic bacteria in groundwater. The potential mechanism may be as follows: ① hydrogen-producing microorganisms, such as Hydrogenophaphaga and Sedimentibacter, produce hydrogen, which is then used as a source of energy by the autotrophic hydrogen-oxidizing bacteria, such as Hydrogenophaga, Pseudomonas, Pseudoxanthomonas, Polynucleobacter, to convert DIC into organic carbon, and ②the synthesis of organic carbon will result in an alkaline environment, which triggers the formation of calcium and magnesium carbonate precipitate.
引文
Alfreider A, Schirmer M, Vogt C. 2012. Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions[J]. FEMS Microbiology Ecology, 79(3): 649-660
    Basu S, Yadav B K, Mathur S. 2017. Modeling Systems and Processes in Wetlands: A Case Study of Engineered Bioremediation of BTEX-Contaminated Water in Treatment Wetlands [M]//Prusty B A K, Chandra R, Azeez P A, Wetland Science: Perspectives From South Asia. Springer India; New Delhi: 463-488
    Blackmore M A, Quayle J R. 1968. Choice between autotrophy and heterotrophy in Pseudomonas oxalaticus. Growth in mixed substrates[J]. Biochemical Journal, 107(5): 705
    Bolliger C, H?Hener P, Hunkeler D, et al. 1999. Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes[J]. Biodegradation, 10(3): 201-217
    Casamayor E O, Llir S M, Picazo A, et al. 2012. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes[J]. Aquatic Sciences, 74(1): 61-75
    蔡萍萍, 宁卓, 何泽,等. 2018. 采油井场土壤微生物群落结构分布[J]. 环境科学,39(7):3329-3338
    Dittrich M, Obst M. 2004. Are picoplankton responsible for calcite precipitation in lakes? [J] Ambio, 33(8): 559-564
    Donawa A L, Ishaque M, Aleem M I. 1973. CO2 fixation and metabolic control in Pseudomonas saccharophila[J]. Canadian Journal of Microbiology, 19: 1243-1250
    Hammes F, Verstraete W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology, 1(1): 3-7
    韩贵琳, 刘丛强. 2005. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 20(4): 394-406
    黄俊, 张诗颖, 王翻翻, 等. 2015. 同步脱氮除硫菌的筛选鉴定及其生长特性研究[J]. 生物技术通报, 31(10): 184-190
    贾璇, 任连海, 李鸣晓, 等. 2016. 芦苇秸秆厌氧联产氢气甲烷过程中细菌群落演替规律[J]. 农业工程学报,32(4): 199-204
    焦珣, 苏小四, 吕航. 2012. 某石油类污染场地地下水石油烃生物降解的地球化学证据[J]. 地质科学, 47(2): 499-506
    K?mpfer P, Schulze R, J?ckel U, et al. 2005. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 55(1): 341-344
    Liu J F, Sun X B, Yang G C, et al. 2015. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration[J]. Frontiers in Microbiology, 6(236):236
    刘新华, 沈照理, 傅家谟. 1997. 地下水油类污染的水文地球化学指标——以山东省淄博市某地下水水源地为例[J]. 沉积学报, 15(2): 236-240
    刘彦, 张金流, 何媛媛, 等.2010. 单生卵囊藻对DIC的利用及其对CaCO3沉积影响的研究[J]. 地球化学, 39(2): 191-196
    . Natural attenuation of petroleum hydrocarbons—a study of biodegradation effects in groundwater (Vitanovac, Serbia) [J]. Environmental Monitoring and Assessment, 190(2): 89
    Negandhi K, Laurion I, Lovejoy C. 2014. Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic[J]. Polar Biology, 37(11): 1669-1683
    Ning Z, Zhang M, He Z, et al. 2018. Spatial pattern of bacterial community diversity formed in different groundwater field corresponding to electron donors and acceptors distributions at a petroleum-contaminated site[J]. Water, 10: 842
    Postec A, Qu M, Neur M, et al. 2015. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period[J]. Frontiers in Microbiology, 6(6):857
    潘根兴. 1999. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J]. 南京农业大学学报, 22(1): 51-57
    Sarkisova S, Patrauchan M A, Berglund D,et al.2005. Calcium-induced virulence factors associated with the extracellular matrix of mucoid pseudomonas aeruginosa biofilms[J]. Journal of Bacteriology, 187(13): 4327-4337
    沈照理, 王焰新, 郭华明. 2012. 水-岩相互作用研究的机遇与挑战[J]. 地球科学-中国地质大学学报, 37(2): 207-219
    苏小四, 吕航, 张文静, 等. 2011. 某石油污染场地地下水石油烃生物降解的(13)C、(34)S同位素证据[J]. 吉林大学学报(地), 41(3): 847-854
    Suarez M P, Rifai H S. 2002. Evaluation of BTEX remediation by natural attenuation at a coastal facility[J]. Groundwater Monitoring & Remediation, 22(1): 62-77
    Wan J, Gu J, Zhao Q, et al. 2016. COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment[J]. Scientific Reports, 6: 25054
    王红梅, 吴晓萍, 邱轩, 等. 2013. 微生物成因的碳酸盐矿物研究进展[J]. 微生物学通报, 40(1): 180-189
    Xu G, Peng J, Feng C, et al. 2015. Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis[J]. Applied Microbiology and Biotechnology, 99(15): 6527-6536
    Xu Q, Zhang C, Li F, et al. 2017. Arthrobacter Sp. Strain MF-2 induces high-mg calcite formation: Mechanism and implications for carbon fixation[J]. Geomicrobiology Journal, 34(2): 157-165
    Yoon K S, Sakai Y, Tsukada N, et al. 2009. Purification and biochemical characterization of a membrane‐bound [NiFe]‐hydrogenase from a hydrogen‐oxidizing, lithotrophic bacterium, Hydrogenophaga sp. AH‐24[J]. FEMS Microbiology Letters, 290(1): 114-120
    于炳松, 赖兴运. 2006. 成岩作用中的地下水碳酸体系与方解石溶解度[J]. 沉积学报, 24(5): 627-635
    袁红朝, 秦红灵, 刘守龙, 等. 2011. 固碳微生物分子生态学研究[J]. 中国农业科学, 44(14): 2951-2958
    张敏, 王森杰, 陈素云, 等. 2017. 地下水苯系物微生物降解及其碳同位素标记[J]. 水文地质工程地质, 44(2): 129-136
    张玉欣, 安俊琳, 王健宇, 等. 2017. 南京北郊大气 BTEX 变化特征和健康风险评估[J]. 环境科学, 38(2): 453-460.
    周小萍, 蓝家程, 张笑微, 等. 2013. 岩溶溪流的脱气作用及碳酸钙沉积——以重庆市南川区柏树湾泉溪流为例[J]. 沉积学报, 31(6): 1014-1021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700