ABR-MBR组合工艺短程硝化过程的微生物种群
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of microbial population of shortcut nitrification in ABR-MBR process
  • 作者:赵诗惠 ; 吕亮 ; 蒋志云 ; 吴忆宁 ; 吴鹏 ; 沈耀良
  • 英文作者:ZHAO Shi-hui;Lü Liang;JIANG Zhi-yun;WU Yi-ning;WU Peng;SHEN Yao-liang;School of Environmental Science and Engineering,Suzhou University of Science and Technology;Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material;Key Laboratory of Environmental Science and Engineering of Jiangsu Province;
  • 关键词:短程硝化 ; 氨氧化菌 ; 亚硝酸盐氧化菌 ; 微生物种群 ; 高通量测序
  • 英文关键词:shortcut nitrification;;ammonium oxidizing bacteria;;microbial population;;nitrite oxidizing bacteria;;high-throughput sequencing
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:苏州科技大学环境科学与工程学院;江苏省水处理技术与材料协同创新中心;江苏省环境科学与工程重点实验室;
  • 出版日期:2018-02-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(51578353);; 江苏省自然科学基金资助项目(BK20160356);; 江苏省高校自然科学研究项目(16KJB610013);; 苏州科技学院科研基金青年项目(XKQ201504)
  • 语种:中文;
  • 页:ZGHJ201802022
  • 页数:8
  • CN:02
  • ISSN:11-2201/X
  • 分类号:168-175
摘要
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、p H值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m~3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.
        The effects of influent ammonium loading rate(ALR) on the species abundance of microbial communities and dominant bacterial in the ABR-MBR combined process were investigated by Miseq high-throughput sequencing. The results indicated that the numbers of ammonium oxidizing bacteria(AOB) can be significantly increased and the bio-activities of nitrite oxidizing bacteria(NOB) can be inhibited at the temperature of 28~32℃, p H of 7.1~7.4 and DO of 0.5~1 mg/L by gradually increasing the influent ALR in the MBR. So that the shortcut nitrification will be achieved efficiently and stably. When influent ALR was 0.94 kg/(m~3·d), the average nitrite accumulation rate was above 60%, and NH_4~+-N removal rate was 90%. Proteobacteria were the dominant bacterial. The relative abundance of Nitrosomonas was increased from 4.97% to 22.56%, the relative abundance of Nitrospira was increased from 0.06% to 2.12% during the operation. Therefore, the nitrite accumulation rates were closely related to the bio-activities and abundance of AOB of shortcut nitrification the process. Its showed that shortcut nitrification can be efficiently achieved by a large number of AOB growth. Still, a slight increase of NOB abundance had little effect on the realization of shortcut nitrification. The microbial diversity and its functional structure stability were the guarantee of a stable and high removal efficiency in the ABR-MBR combined process.
引文
[1]Ciudad G,Munoz O R,Ruiz G,et al.Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process.Process Biochem[J].Process Biochemistry,2005,40(5):1715-1719.
    [2]Wang C C,Lee P H,Kumar M,et al.Simultaneous partial nitrification,anaerobic ammonium oxidation and denitrification(SNAD)in a full-scale landfill-leachate treatment plant.[J].Journal of Hazardous Materials,2010,175(1-3):622-628.
    [3]Limpiyakorn T,Shinohara Y,Kurisu F,et al.Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo[J].Fems Microbiology Ecology,2005,54(2):205-217.
    [4]Criddle C,Wells G.Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems[J].Journal of Environmental Sciences,2010,22(4):627-634.
    [5]李磊,张立东,刘晶茹,等.实时荧光定量PCR对A2/O短程硝化系统内氨氧化菌的定量分析[J].环境工程学报,2012,6(10):3597-3602.
    [6]Hallin S,Lydmark P,Kokalj S,et al.Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different solids retention time[J].Journal of Applied Microbiology,2005,99(3):629-640.
    [7]曾薇,李磊,杨莹莹军,等.A2/O工艺处理生活污水短程硝化反硝化的研究[J].中国环境科学,2010,30(5):625-632.
    [8]Guo J,Peng Y,Wang S,et al.Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure.[J].Bioresource Technology,2009,100(11):2796-2802.
    [9]Ciudad G,González R,Bornhardt C,et al.Modes of operation and p H control as enhancement factors for partial nitrification with oxygen transport limitation.[J].Water Research,2007,41(20):4621-4629.
    [10]吴鹏,陆爽君,徐乐中,等.温度对ABR-MBR复合工艺处理生活污水的影响及其微生物群落分析[J].环境科学,2014,35(9):3466-3472.
    [11]徐浩,李捷,罗凡,等.低C/N比城市污水短程硝化特性及微生物种群分布[J].环境工程学报,2017,11(3):1477-1481.
    [12]Turk O,Mavinic D S.Benefits of using selective inhibition to remove nitrogen from highly nitrogenous wastes[J].Environmental Technology,1987,8(1-12):419-426.
    [13]蔡言安,李冬,毕学军,等.基于不同测序技术的生物群落结构及功能菌分析[J].中国环境科学,2016,36(6):1830-1834.
    [14]Pace N R.A molecular view of microbial diversity and the biosphere[J].Science,1997,276(5313):734-740.
    [15]Lyautey E,Lacoste B N D,Ten-Hage L C,et al.Analysis of bacterial diversity in river biofilms using 16S r DNA PCR-DGGE:methodological settings and fingerprints interpretation[J].Water Research,2005,39(2/3):380-388.
    [16]Wu P,Ji X,Song X,et al.Nutrient removal performance and microbial community analysis of a combined ABR–MBR(CAMBR)process[J].Chemical Engineering Journal,2013,232(9):273-279.
    [17]López-Gutiérrez J C,Henry S,Hallet S,et al.Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J].Journal of Microbiological Methods,2004,57(3):399-407.
    [18]曾薇,杨庆,张树军,等.采用FISH、DGGE和Cloning对短程脱氮系统中硝化菌群的比较分析[J].环境科学学报,2006,26(5):734-739.
    [19]陈重军,张海芹,汪瑶琪,等.基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J].环境科学,2016,37(7):2652-2658.
    [20]编委会国家环境保护总局水和废水监测分析方法.水和废水监测分析方法[M].4版.中国环境科学出版社,2002.
    [21]Jubany I,Lafuente J,Baeza J A,et al.Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements.[J].Water Research,2009,43(11):2761-2772.
    [22]侯爱月,李军,卞伟,等.不同短程硝化系统中微生物群落结构的对比分析[J].中国环境科学,2016,36(2):428-436.
    [23]Chang Y M,Yang Q,Hao C B,et al.[Experimental study of autotrophic denitrification bacteria through bioaugmentation of activated sludge from municipal wastewater plant].[J].Environmental Science,2011,32(4):1210-1216.
    [24]赵志瑞,马斌,张树军,等.高氨氮废水与城市生活污水短程硝化系统菌群比较[J].环境科学,2013,34(4):1448-1456.
    [25]Kragelund C,Levantesi C,Borger A.Identity,abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants[J].Microbiology,2008,154(Pt 3):886-894.
    [26]Yang C,Zhang W,Liu R,et al.Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants.[J].Environmental Science&Technology,2011,45(17):7408-7415.
    [27]Park H D,Noguera D R.Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels[J].Journal of Microbiology&Biotechnology,2008,18(8):1470-1474.
    [28]Burrell P,Keller J,Blackall L L.Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge[J].Water Science&Technology,1999,39(6):45-52.
    [29]Thomsen T R,Kong Y,Nielsen P H.Ecophysiology of abundant denitrifying bacteria in activated sludge[J].Fems Microbiology Ecology,2007,60(3):370-382.
    [30]高晨晨,郑兴灿,游佳,等.城市污水脱氮除磷系统的活性污泥菌群结构特征[J].中国给水排水,2015,31(23):37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700