内循环微型流化床流动特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrodynamics of internally circulating micro fluidized bed
  • 作者:姚梅琴 ; 岳君容 ; 战金辉 ; 许光文 ; 刘晓星
  • 英文作者:YAO Meiqin;YUE Junrong;ZHAN Jinhui;XU Guangwen;LIU Xiaoxing;State Key Laboratory of Multi-phase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences;
  • 关键词:微型流化床 ; 内循环 ; 流体力学 ; 化学气相沉积
  • 英文关键词:micro fluidized bed;;internal circulation;;hydrodynamics;;chemical vapor deposition
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国科学院过程工程研究所多相复杂系统国家重点实验室;
  • 出版日期:2017-05-19 16:41
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:国家重点研发计划项目(2016YFF0102600);; 中国科学院“百人计划”项目(Y224051398)~~
  • 语种:中文;
  • 页:HGSZ201710008
  • 页数:8
  • CN:10
  • ISSN:11-1946/TQ
  • 分类号:79-86
摘要
针对开发适用于化学气相沉积反应动力学研究的微型流化床反应分析仪的应用需求,研究了外径为30 mm的内循环微型流化床中气固流动特性,具体考察了中心射流管伸入高度、内导流管直径和颗粒装载量对实现固体物料内循环的最小操作气速和导流管与环隙区间窜气的影响。结果表明,随着射流管伸入高度的增大,实现颗粒内循环流动的最小操作气速变大;存在最优的导流管直径(20 mm),使得实现颗粒环流的最小操作气速较小;增大颗粒装载量有利于降低颗粒内循环的最小操作气速。通过检测示踪气体在环隙区内的质谱信号,发现在所考察的参数范围内,反应器底部不存在导流管区向环隙区的窜气;在反应器上部,由于颗粒对气体的夹带,环隙区上部总能检测到示踪气体,且窜气特性随操作气速的增大而增强。研究结果可为设计适用于化学气相沉积反应的内循环微型流化床反应器提供参考。
        Considering the pressing needs of developing micro fluidized bed reaction analyzer(MFBRA) suitable for analyzing chemical vapor deposition reaction, this study conducted a preliminary research on the hydrodynamics of internally circulating micro fluidized bed. It investigated the influences of central jetting tube height, in-bed draft tube diameter and initial particle bed height on the start-up gas velocity of internal particle circulation and the gas bypass into the annulus. The results showed that raising the height of jetting tube increases the start-up gas velocity for particle internal circulation. There is an existed optimal draft tube diameter(20 mm) that minimizes such a start-up gas velocity. The start-up gas velocity becomes lower with the increase of initial particle bed height. The gas bypass into the annulus was evaluated according to the mass-spectrum intensities of the tracer gas. For the tested experimental conditions, the bypass of gas from draft tube to annulus was ignorable in the bottom section but discernable at the top of the annulus.
引文
[1]余剑,朱剑虹,岳君容,等.微型流化床反应动力学分析仪的研制与应用[J].化工学报,2009,60(10):2669-2674.YU J,ZHU J H,YUE J R,et al.Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J].CIESC Journal,2009,60(10):2669-2674.
    [2]YU J,YUE J R,LIU Z E,et al.Kinetics and mechanism of solid reactions in a micro fluidized bed reactor[J].AICh E Journal,2010,56(11):2905-2912.
    [3]余剑,岳君容,刘文钊,等.非催化气固反应动力学热分析方法与仪器[J].分析化学,2011,39(10):1549-1554.YU J,YUE J R,LIU W Z,et al.Thermal analysis approach and instrument for non-catalytic gas-solid reactions[J].Chinese Journal of Analytical Chemistry,2011,39(10):1549-1554.
    [4]余剑,李强,段正康,等.微型流化床中的等温微分反应特性[J].中国科学:化学,2011,41(1):152-160.YU J,LI Q,DUAN Z K,et al.Isothermal differential characteristics of the reaction in micro fluidized bed[J].Scientia Sinica Chimica,2011,41(1):152-160.
    [5]YU J,YAO C B,ZENG X,et al.Biomass pyrolysis in a micro-fluidized bed reactor:characterization and kinetics[J].Chemical Engineering Journal,2011,168:839-847.
    [6]蔡连国,刘文钊,余剑,等.煤程序升温与等温热解特性及动力学比较研究[J].煤炭转化,2012,35(3):6-14.CAI L G,LIU W Z,YU J,et al.Comparative study on coal pyrolysis via programmed and isothermal heating[J].Coal Conversion,2012,35(3):6-14.
    [7]ZENG X,WANG F,WANG Y G,et al.Characterization of char gasification in a micro fluidized bed reaction analyzer[J].Energy Fuels,2014,28:1838-1845.
    [8]王芳,曾玺,王永刚,等.微型流化床与热重测定煤焦非等温气化反应动力学对比[J].化工学报,2015,66(5):1716-1722.WANG F,ZENG X,WANG Y G,et al.Comparison of non-isothermal coal char gasification in micro fluidized bed and thermogravimetric analyzer[J].CIESC Journal,2015,66(5):1716-1722.
    [9]MAO Y B,DONG L,DONG Y P,et al.Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer[J].Bioresource Technology,2015,181:155-162.
    [10]GAI C,DONG Y P,LV Z C,et al.Pyrolysis behaviou and kinetic study of phenol as tar model compound in micro fluidized bed reactor[J].International Journal of Hydrogen Energy,2015,40:7956-7964.
    [11]YU J,ZENG X,ZHANG G Y,et al.Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed[J].Environmental Science&Technology,2013,47:7514-7520.
    [12]ZHANG Y M,YAO M Q,SUN G G,et al.Characteristics and kinetics of coked catalyst regeneration via steam gasification in a micro fluidized bed[J].Ind.Eng.Chem.Res.,2014,53:6316-6324.
    [13]LIN Y H,GUO Z C,TANG H Q,et al.Kinetics of reduction reaction in micro-fluidized bed[J].Journal of Iron and Steel Research,International,2012,19(6):6-8.
    [14]LIN Y H,GUO Z C,TANG H Q.Reduction behavior with CO under micro-fluidized bed conditions[J].Journal of Iron and Steel Research,International,2013,20(2):9-13.
    [15]SONG Y,WANG Y,YANG W,et al.Reduction of NO over biomass tar in micro-fluidized bed[J].Fuel Processing Technology,2014,118:270-277.
    [16]ZHENG Y M,YAO M Q,GAO S Q,et al.Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed[J].Applied Energy,2015,160:820-828.
    [17]WANG F,ZENG X,WANG Y G,et al.Characterization of coal char gasification with steam in a micro fluidized bed reaction analyzer[J].Fuel Processing Technology,2016,141:2-8.
    [18]POTIC B,KERSTEN S R A,YE M,et al.Fluidization with hot compressed water in micro-reactors[J].Chemical Engineering Science,2005,(60):5982-5990.
    [19]LIU X H,XU G W,GAO S Q.Micro fluidized beds:wall effect and operability[J].Chemical Engineering Journal,2008,137:302-307.
    [20]GUO Q J,XU Y Q,YUE X H.Fluidization characteristics in micro-fluidized beds of various inner diameters[J].Chemical Engineering Technology,2009,32(12):1992-1999.
    [21]WANG F,FAN L S.Gas-solid fluidization in mini-and micro-channels[J].Ind.Eng.Chem.Res.,2011,50:4741-4751.
    [22]WANG J W,TAN L H,HOEF M A,et al.From bubbling to turbulent fluidization:advanced onset of regime transition in micro-fluidized beds[J].Chemical Engineering Science,2011,66:2001-2007.
    [23]LIU X X,ZHU C Q,GENG S J,et al.Two-fluid modeling of Geldart A particles in gas-solid micro-fluidized beds[J].Particuology,2015,21:118-127.
    [24]耿爽,余剑,张聚伟,等.微型流化床内气体返混[J].化工学报,2013,64(3):867-876.GENG S,YU J,ZHANG J W,et al.Gas back-mixing in micro fluidized beds[J].CIESC Journal,2013,64(3):867-876.
    [25]LIU M X,LU C X,ZHU X M,et al.Bed density and circulation mass flowrate in a novel annulus-lifted gas-solid air loop reactor[J].Chemical Engineering Science,2010,65(22):5830-5840.
    [26]JEON H J,KIM S D,KIM S J,et al.Solid circulation and gas bypassing characteristics in a squire internally circulating fluidized bed with draft tube[J].Chemical Engineering and Processing,2008,47:2351-2360.
    [27]BYUNG H S,YOUNG T K,SANG D K.Circulation of solid and gas bypassing in an internally circulating fluidized bed with a draft tube[J].Chemical Engineering Journal,1997,68:118-122.
    [28]CHANDEL M K,ALAPPAT B J.Pressure drop and gas bypassing in recirculating fluidized beds[J].Chemical Engineering Science,2006,61:1489-1499.
    [29]刘梦溪,卢春喜,时铭显.气固环流反应器的研究进展[J].化工学报,2013,64(1):116-123.LIU M X,LU C X,SHI M X.Advances in gas-solid airlift loop reactor[J].CIESC Journal,2013,64(1):116-123.
    [30]XUE H F,XIAO H,WU Z P.Study of the bed density and pressure balance within a circulating fluidized bed[J].Chemical Reaction Engineering and Technology,1997,13(1):38-44.
    [31]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2008:405-633.GUO M S,LI H Z.Handbook of Fluidization[M].Beijing:Chemical Industry Press,2008:405-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700