外阻对三室MFC产电性能和Cu迁移特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of external resistance on the bioelectricity generation and the migration of Cu in a three-chamber microbial fuel cell
  • 作者:朱丹丹 ; 张婧然 ; 周璇 ; 王辉 ; 李先宁
  • 英文作者:ZHU Dan-dan;ZHANG Jing-ran;ZHOU Xuan;WANG Hui;LI Xian-ning;Department of Environmental Science, Southeast University;
  • 关键词:微生物燃料电池(MFCs) ; 外接电阻 ; 土壤修复 ; Cu迁移
  • 英文关键词:microbial fuel cells(MFCs);;external resistance;;soil remediation;;Cu migration
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:东南大学能源与环境学院;
  • 出版日期:2019-02-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:江苏省自然科学基金资助项目(BK20171351);; 中央高校基本科研业务费专项资金资助项目(2242016K41042)
  • 语种:中文;
  • 页:ZGHJ201902041
  • 页数:9
  • CN:02
  • ISSN:11-2201/X
  • 分类号:286-294
摘要
构建一种新型的三室微生物燃料电池(microbial fuel cells, MFCs)对重金属Cu污染的土壤进行修复,研究不同外阻条件下MFC的产电性能和土壤中Cu的迁移去除情况.结果表明,当外接电阻从100?增大到1000?时,三室MFC的输出电压从0.1V提高到0.4V,最大功率密度从1.10W/m~3降低到0.71W/m~3,且阴极极化现象也随外阻增大而更加显著.装置运行63d后,MFC外接电阻越大,近阳极土壤区的Cu的去除率越高,外阻为1000?的MFC近阳极土壤区的Cu去除率达到39.7%.通过改进欧共体标准(BCR)连续提取法分析重金属的形态,发现乙酸可提取态和可还原态为Cu迁移的两种主要形态.此外,土壤的性质也发生变化,p H值呈现由阳极到阴极逐渐升高的趋势,而电导率则相反.阴极电极的扫描电镜(SEM)和X射线衍射(XRD)结果也表明部分迁移到阴极的Cu(II)被还原成单质Cu.
        In this study, a novel three-chamber microbial fuel cell(MFC) was constructed in the soil contaminated with Cu, theperformance of bioelectricity generation and the migration of Cu in MFC with different external resistance conditions wereinvestigated. The results revealed that the output voltage of the three-chamber MFC increased from 0.1 V to 0.4 V with the externalresistance increased from 100? to 1000?, and the maximum power density decreased from 1.10 W/m~3 to 0.71 W/m~3. Thephenomenon of cathode polarization was more obvious with the increase of external resistance. Experimental results showed that theelectricity generated by MFCs could significantly facilitate metal removal, the removal efficiency of Cu in soil near anode reached39.7% with the external resistance of 1000? after 63 days. Meanwhile, the modified Community Bureau of Reference(BCR)sequential extraction procedure was applied to characterize the five fractions of heavy metals. It showed that acid extractable andreducible fractions were the two main fractions of Cu migration. In addition, the p H increased gradually from the anode to thecathode in Cu-contaminated soil while the conductivity was opposite. The results of the scanning electron microscope(SEM) andX-ray diffraction(XRD) demonstrated that the Cu(II) which partially migrated to the cathode was reduced to the metal copper.
引文
[1]Bolan N,Kunhikrishnan A,Thangarajan R,et al.Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?[J].Journal of Hazardous Materials,2014,266(4):141-166.
    [2]Khalid S,Shahid M,Niazi N K,et al.A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration,2017,182(Part B):247-268.
    [3]Lu K,Yang X,Gielen G,et al.Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals(Cd,Cu,Pb and Zn)in contaminated soil[J].Journal of Environmental Management,2017,186(Pt 2):285-292.
    [4]Emenike C U,Agamuthu P,Fauziah S.Sustainable remediation of heavy metal polluted soil:A biotechnical interaction with selected bacteria species[J].Journal of Geochemical Exploration,2016.
    [5]Sharma S,Tiwari S,Hasan A,et al.Recent advances in conventional and contemporary methods for remediation of heavy metalcontaminated soils[J].Biotech,2018,8(4):216.
    [6]串丽敏,赵同科,郑怀国,等.土壤重金属污染修复技术研究进展[J].环境科学与技术,2014,(S2):213-222.Chuan Limin,Zhao Tongke,Zheng Huaiguo,et al.Research advances in remediation of heavy metal contaminated soils[J].Environmental Science&Technology,2014,(S2):213-222.
    [7]Bruce E.Logan,Bert Hamelers,RenéRozendal,et al.Microbial fuel cells:Methodology and technology[J].Environmental Science&Technology,2006,40(17):5181.
    [8]李云龙,张宝刚,程铭,等.微生物燃料电池技术治理重金属污染的研究进展[J].环境科学与技术,2015,(S1):254-258.Li Yunlong,Zhang Baogang,Cheng Ming,et al.Research progress on microbial fuel cells for heavy metal removals[J].Environmental Science&Technology,2015,(S1):254-258.
    [9]Li X,Wang X,Weng L,et al.Microbial fuel cells for organiccontaminated soil remedial applications:A review[J].Energy Technology,2017,5(8):1156-1164.
    [10]Chen Z,Huang Y C,Liang J H,et al.A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere[J].Bioresource Technology,2012,108(1):55-59.
    [11]Tender L M,Reimers C E,Stecher Haholmes D E,et al.Harnessing microbially generated power on the seafloor[J].Nature Biotechnology,2002,20(8):821.
    [12]Habibul N,Yi H,Wang Y K,et al.Bioelectrochemical chromium(VI)removal in plant-microbial fuel cells[J].Environmental Science&Technology,2016,50(7):3882.
    [13]郝小旋,周秀秀,张姣,等.厌氧发酵污泥燃料电池处理含铬废水的效能及机理[J].中国环境科学,2014,34(10):2581-2587.Hao Xiao-Xuan,Zhou Xiu-Xiu,Zhang Jiao,et al.Efficacy and mechanism of microbial fuel cell treating Cr(Ⅵ)-containing wastewater with anaerobically fermented sludge as substrate[J].China Environmental Science,2014,34(10):2581-2587.
    [14]Huang L,Chen J,Quan X,et al.Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J].Bioprocess&Biosystems Engineering,2010,33(8):937.
    [15]Qiu R,Zhang B,Li J,et al.Enhanced vanadium(V)reduction and bioelectricity generation in microbial fuel cells with biocathode[J].2017.
    [16]Heijne A T,Liu F,Rv W,et al.Copper recovery combined with electricity production in a microbial fuel cell[J].Environmental Science&Technology,2010,44(11):4376.
    [17]Wang Z,Lim B,Lu H,et al.Cathodic reduction of Cu2+and electric power eneration using a microbial fuel cell[J].Bulletin-Korean Chemical Society,2010,31(31):2025-2030.
    [18]Rozendal R A,Buisman C J N.Effects of Membrane Cation Transport on p H and Microbial Fuel Cell Performance?[J].Environmental Science&Technology,2006,40(17):5206-5211.
    [19]杨政伟,顾莹莹,赵朝成,等.土壤微生物燃料电池的研究进展及展望[J].化工学报,2017,68(11):3995-4004.Yang Zhengwei,Gu Yingying,Zhao Chaocheng,et al.Research progress and prospect of soil microbial fuel cells[J].CIESC Journal,2017.
    [20]Klass D L.Biomass for Renewable Energy,Fuels,and Chemicals[M].City,2000.
    [21]周秀秀,顾早立,郝小旋,等.剩余污泥燃料电池处理含铬废水的效能及机理[J].中国环境科学,2014,34(9):2245-2251.Zhou Xiu Xiu,Gu Zao Li,Hao Xiao Xuan,et al.Efficacy and mechanism of microbial fuel cell treating Cr(VI)-containing wastewater with excess sludge as substrate[J].China Environmental Science,2014,34(9):2245-2251.
    [22]杨芳,李兆华,肖本益.微生物燃料电池内阻及其影响因素分析[J].微生物学通报,2011,38(7):1098-1105.Yang Fang,Li Zhaohua,Xiao benyi.Analysis of internal resistance and its influencing factors of MFC[J].Microbiology China,2011,38(7):1098-1105.
    [23]Rauret G,Lópezsánchez J F,Sahuquillo A,et al.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring Jem,1999,1(1):57.
    [24]Ure A M,Quevauviller P,Muntau H,et al.Speciation of heavy metals in soils and sediments.An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities[J].International Journal of Environmental Analytical Chemistry,1993,51(1-4):135-151.
    [25]Sajana T K,Ghangrekar M M,Mitra A.Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water[J].Aquacultural Engineering,2014,61(8):17-26.
    [26]陈青,周顺桂,袁勇,等.外阻对污泥微生物燃料电池产电以及有机物降解的影响[J].生态环境学报,2011,20(5):946-950.Chen Qing,Zhou Shungui,Yuan Yong,et al.Effect of external resistance on electricity production and degradation of organic matter in sludge microbial fuel cells[J].Ecology and Environmental Sciences,2011,20(5):946-950.
    [27]Alhamdan A Z,Reddy K R.Transient behavior of heavy metals in soils during electrokinetic remediation[J].Chemosphere,2008,71(5):860-871.
    [28]Yeung A T,Gu Y Y.A review on techniques to enhance electrochemical remediation of contaminated soils[J].Journal of Hazardous Materials,2011,195(52):11.
    [29]Kim S O,Kim K W.Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis[J].Journal of Hazardous Materials,2001,85(3):195.
    [30]陈明.p H值对土壤吸附铜的影响分析[J].四川环境,2012,31(6):13-15.Ming C.Effect of p H Value on Soil Adsorption of Copper[J].Sichuan Environment,2012,31(6):13-15.
    [31]Ottosen L M,Hansen H K,Ribeiro A B,et al.Removal of Cu,Pb and Zn in an applied electric field in calcareous and non-calcareous soils[J].Journal of Hazardous Materials,2001,85(3):291.
    [32]Habibul N,Hu Y,Sheng G-P.Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils[J].Journal of Hazardous Materials,2016,318(Supplement C):9-14.
    [33]童君君.土壤重金属污染(Cu/Cr)电动修复基础研究[D].合肥:合肥工业大学,2013.Tong Junjun.Fundamental study on electrokinetic remedation of soils polluted by Cu/Cr[D].Hefei:Hefei University of Technology,2013.
    [34]滕彦国,刘晶,崔艳芳,等.德兴矿区土壤中铜的地球化学形态及影响因素[J].矿物岩石,2007,27(2):59-63.Teng Y G,Liu J,Cui Y F,et al.Geochemical speciation and affacting factors of copper in the soil in Dexing mining area[J].Journal of Mineralogy&Petrology,2007,27(2):59-63.
    [35]Chen Z,Zhu B K,Jia W F,et al.Can electrokinetic removal of metals from contaminated paddy soils be powered by microbial fuel cells?[J].Environmental Technology&Innovation,2015,3:63-67.
    [36]Peng J F,Song Y H,Yuan P,et al.The remediation of heavy metals contaminated sediment[J].Journal of Hazardous Materials,2009,161(2):633-640.
    [37]袁时珏,张道方.p H和溶解氧对上海蕴藻浜河道沉积物重金属的影响[J].能源研究与信息,2016,32(2):63-70.Shijue Y,Daofang Z.Effects of p H and dissolved oxygen on the release of heavy metals in the sediment from Yunzaobang River[J].Energy Research&Information,2016,32(2):63-70.
    [38]姚敏,张宇峰,崔志强,等.p H和有机配体对Cu-Pb复合污染土壤中Cu的解吸行为的影响[J].南京工业大学学报(自然科学版),2006,28(4):9-12.Yao M,Zhang Y,Cui Z,et al.Influence of p H and organic chelators on desorption of copper from copper-lead complex contam inated soil[J].Journal of Nan Jing University of Technology,2006,28(4):9-12.
    [39]Wang H,Song H,Yu R,et al.New process for copper migration by bioelectricity generation in soil microbial fuel cells[J].Environmental Science&Pollution Research,2016,23(13):13147-13154.
    [40]Tao H C,Liang M,Li W,et al.Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell[J].Journal of Hazardous Materials,2011,189(1):186-192.
    [41]Elbana T A,Magdi Selim H,Akrami N,et al.Freundlich sorption parameters for cadmium,copper,nickel,lead,and zinc for different soils:Influence of kinetics[J].Geoderma,2018,324:80-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700