AVC系统晶闸管与SF6开关电容投切技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Switching Technology of Thyristor and SF6 Switch Capacitor in AVC System
  • 作者:王灿霞 ; 成佳 ; 肖霞 ; 孙晶
  • 英文作者:WANG Canxia;CHNEG Jia;XIAO Xia;SUN Jing;College of Electrical Engineering & New Energy,China Three Gorge University;
  • 关键词:AVC系统 ; TSC ; SF6开关 ; PSIM ; 补偿电容器 ; 投切频率
  • 英文关键词:AVC SAVC system;;TSC;;SF6 switch;;PSIM;;compensating capacitor;;switching frequency
  • 中文刊名:DZKK
  • 英文刊名:Electronic Science and Technology
  • 机构:三峡大学电气与新能源学院;
  • 出版日期:2018-12-20 15:17
  • 出版单位:电子科技
  • 年:2019
  • 期:v.32;No.357
  • 基金:国家自然科学基金(51507091);; 三峡大学学位论文培优基金(2018SSPY079)~~
  • 语种:中文;
  • 页:DZKK201906011
  • 页数:6
  • CN:06
  • ISSN:61-1291/TN
  • 分类号:53-57+61
摘要
随着AVC系统的投运,变电站内电容器投切更加频繁。传统补偿电容器的SF6开关投切频率低,难以满足投切间隙中出现的无功补偿需求,限制了电容器的作用。为了解决上述问题,文中提出了一种复合开关结构。该结构将机械投切和电子开关投切相结合,构成晶闸管+SF6开关的组合式投切方案。文中对晶闸管+SF6开关投切电容器的工作原理进行了介绍,并分析了开关控制策略。通过合理的投切策略可以实现晶闸管和SF6开关的相互保护,使晶闸管阻断时避免承受高电压,也避免了SF6开关在高频投切的情况下频繁动作,延长设备使用寿命。最后,通过PSIM软件仿真验证了该复合开关的合理性和可行性。
        With the commissioning of the AVC system, the switching of the capacitor in the substation was more frequent. The conventional switching capacitor SF6 switching frequency is low, and it fails to meet the reactive power compensation requirements in the switching gap, limiting the role of the capacitor. In order to solve the above problems, a compound switch structure was proposed, which combined mechanical switching and electronic switching to form a combined switching scheme of thyristor and SF6 switch. The working principle of thyristor & SF6 switching capacitor was introduced and the switch control strategy was analyzed in this paper. Through a reasonable switching strategy, mutual protection of the thyristor and the SF6 switch was realized, so that the thyristor could withstand high voltage when blocked, and also avoided frequent operation of the SF6 switch in the case of high-frequency switching, thereby prolonging the service life of the device. Finally, the rationality and feasibility of the compound switch were verified by PSIM software simulation.
引文
[1] 张勇军,张锡填,苏杰和.基于AVC系统的省地电网关口无功功率协调控制方法[J].电网技术,2013,37(10):2771-2777.Zhang Yongjun,Zhang Xitian,Su Jiehe.An AVC system based coordinated control method for reactive power at gateway between provincial and regional power grids[J].Power System Technology,2013,37(10):2771-2777.
    [2] 唐永红,徐琳,范宏,等.基于实时仿真系统的地区电网AVC系统闭环检测方法[J].电网技术,2013,37(9):2515-2520.Tang Yonghong,Xu Lin,Fan Hong,et al.Real-time simulation based closed-loop detection for AVC system of regional power grid[J].Power System Technology,2013,37(9):2515-2520.
    [3] 毛文奇,李娥英,杨海平.长沙220kV芙蓉变电站开关偷跳事故分析[J].高电压技术,2005(10):90-91.Mao Wenqi,Li Eying,Yang Haiping.Analysis for switchgear accident of the 220 kV Furong substation in Changsha[J].High Voltage Engineering,2005(10):90-91.
    [4] 林莘,夏亚龙,刘卫东,等.电容器组投切用SF_6断路器介质恢复特性数值计算与试验研究[J].电工技术学报,2015,30(17):161-171.Lin Xin,Xia Yalong,Liu Weidong,et al.The numerical computation and experiment research on dielectric recovery characteristics of SF6 circuit breaker for switching capacitor bank[J].Transactions of China Electrotechnical Society,2015,30(17):161-171.
    [5] 雷万忠,付立华.SF_6断路器预击穿引起35kV并联电抗器过电压试验与仿真计算[J].武汉大学学报:工学版,2014,47(4):511-515.Lei Wanzhong,Fu Lihua.Test and simulation study of overvoltage caused by pre-breakdown of SF6 breaker[J].Journal of Wuhan University:Engineering Edition,2014,47(4):511-515.
    [6] 魏泉,成勇,武星,等.浅析高压SF_6断路器可靠性研究的特点和难点[J].高压电器,2013,49(11):82-87.Wei Quan,Cheng Yong,Wu Xing,et al.Discussion of characteristics and difficulties on reliability research of high-voltage SF6 circuit-breaker[J].High Voltage Apparatus,2013,49(11):82-87.
    [7] 房萍,李卫国.基于复合开关投切不同负载控制参数设计[J].电力电子技术,2014,48(7):24-27.Fang Ping,Li Weiguo.Design of the control parameter of switching different load by hybrid switching[J].Power Electronics,2014,48(7):24-27.
    [8] 农为踊,程汉湘,陈发纲,等.复合型晶闸管投切电容器装置设计[J].电力电容器与无功补偿,2009,30(6):45-47.Nong Weiyong,Cheng Hanxiang,Chen Fagang,et al.The design of compound thyristor switched capacitor device[J].Power Capacitor&Reactive Power Compensation,2009,30(6):45-47.
    [9] 农为踊,程汉湘.TSC装置投切过程分析[J].电力电容器与无功补偿,2012,33(6):26-29.Nong Weiyong,Cheng Hanxiang.Switching process analysis of TSC device[J].Power Capacitor&Reactive Power Compensation,2012,33(6):26-29.
    [10] 王绍伟.基于PWM的无功补偿系统设计[J].电子科技,2013,26(6):66-70.Wang Shaowei.PWM-based reactive power compensation system design[J].Electronic Science and Technology,2013,26(6):66-70.
    [11] 薛畅,王建赜,纪延超,等.具有高动态性能和锁相精确度的改进PLL设计[J].电机与控制学报,2014,18(8):116-120.Xue Chang,Wang Jianze,Ji Yanchao,et al.Design of improved PLL with high dynamic performance and phase-ocked precision[J].Electric Machines and Control,2014,18(8):116-120.
    [12] 陶兴华,李永东,孙敏,等.一种基于同步旋转坐标变换的单相锁相环新算法[J].电工技术学报,2012,27(6):147-152.Tao Xinghua,Li Yongdong,Sun Min,et al.A novel single-phase locked loop algorithm based on synchronous reference frame[J].Transactions of China Electrotechnical Society,2012,27(6):147-152.
    [13] 魏业文.多目标优化磁能再生开关技术及其无功控制应用研究[D].广州:华南理工大学,2015.Wei Yewen.Research on multi-objective optimized magnetic energy recovery switch and applied as reactive power compensator[D].Guangzhou:South China University of Technology,2015.
    [14] Brasil T A,Caicedo J,Aredes M.Comparative study of single-phase PLLs and fuzzy based synchronism algorithm[C].Istanbul:International Symposium on Industrial Electronics,IEEE,2014.
    [15] Dong D,Boroyevich D,Mattavelli P,et al.A high-performance single-phase Phase-Locked-Loop with fast line-voltage amplitude tracking[C].Fort Worth:Applied Power Electronics Conference and Exposition,IEEE,2011.
    [16] Thacker T,Boroyevich D,Burgos R,et al.Phase-locked loop noise reduction via phase detector implementation for single-phase systems[J].IEEE Transactions on Industrial Electronics,2011,58(6):2482-2490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700