磁场结构对Ф300 mm直拉单晶硅碳杂质的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Magnetic Field Structure on Carbon Concentration in 300 mm Diameter Czochralski Single Crystal Silicon Growth
  • 作者:李岩 ; 李进 ; 景华玉 ; 高昂 ; 高忙忙
  • 英文作者:LI Yan;LI Jin;JING Hua-yu;GAO Ang;GAO Mang-mang;Ningxia Key Laboratory of Photovoltaic Materials,Ningxia University;
  • 关键词:单晶硅 ; 勾型磁场 ; 熔体流动 ; 洛伦兹力 ; 碳浓度
  • 英文关键词:single crystal silicon;;cusp magnetic field;;melt convection;;Lorenz force;;carbon concentration
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:宁夏大学宁夏光伏材料重点实验室;
  • 出版日期:2017-11-15
  • 出版单位:人工晶体学报
  • 年:2017
  • 期:v.46;No.229
  • 基金:宁夏高等学校科学技术研究项目(NGY2015032)
  • 语种:中文;
  • 页:RGJT201711005
  • 页数:6
  • CN:11
  • ISSN:11-2637/O7
  • 分类号:30-35
摘要
本文利用CGSim晶体生长软件分析了不同磁场结构对直拉单晶硅中碳杂质含量的影响。结果表明,气氛中的碳原子主要通过熔体自由表面上靠近坩埚壁一侧区域扩散进熔体。通过调节对称磁场和非对称磁场的结构参数来抑制碳原子掺入区域的对流强度,增大碳原子扩散层的厚度,进而降低熔体中的碳原子浓度,最终获得低碳含量的直拉单晶硅。
        In this paper,the CGSim crystal growth software was employed to evaluate the effect of various magnetic field structures on carbon impurity in silicon melt. The results show that,the carbon atoms in the atmosphere is preferably diffused into silicon melt from melt free surface closed to the crucible sidewall. By optimizing the parameters of axisymmetric and asymmetric magnetic fields, the melt convection strength beneath melt free surface has been suppressed,resulting in the increase of diffusion layer of carbon atom. In turn,a high quality of single crystal silicon with low carbon concentration has been obtained owing to the lower impurity content of carbon.
引文
[1]王莉蓉,杨德仁,应啸.太阳能电池用直拉单晶硅中碳对氧沉淀的作用[J].太阳能学报,2002,23(2):129-133.
    [2]Xin L,Bing G,Koichi K.Numerical Investigation of Carbon Contamination during the Melting process of Czochralski Silicon Crystal Growth[J].J.Cryst.Growth,417(2015):58-64.
    [3]Chen L,Xuegong Y,Peng C.Effect of Oxygen Pre-cipitation on the Performance of Czochralski Silicon Solar Cells[J].Sol.Energy Mater Sol.Cells,2011,95(11):3148-3151.
    [4]Yichao W,Shuai Y,Xuegong Y.Impact of Carbon Co-doping on the Performance of Crystalline Silicon Solar Cells[J].Sol.Energy Mater.Sol.Cells,2016,154:94-98.
    [5]常麟,崔彬,周旗钢,等.晶体生长速度对硅单晶微缺陷影响的数值分析[J].半导体材料与设备,2012,37(3):206-211.
    [6]高忙忙,薛子文,李进,等.感应加热制备太阳能级铸造准单晶硅熔体流动行为研究[J].人工晶体学报,2015,44(7):1941-1945.
    [7]毛智慧,周文韬,田琦,等.晶体硅材料中杂质元素分析方法研究进展[J].化学分析计量,2015,24(2):102-105.
    [8]刘尧,何力军,狄红祥,等.多晶硅铸锭内嵌杂质引发热应力的数值分析[J].人工晶体学报,2016,45(4):923-928.
    [9]Gao B,Kakimoto K.Global Simulation of Coupled Carbon and Oxygen Transport in a Czochralski Furnace for Silicon Crystal Growth[J].J.Cryst.Growth,2010,312:2972-2976.
    [10]Kalaev V V.Combined effect of DC Magnetic Fields and Free Surface Stresses on the Melt Flow and Crystallization Front Formation during 400 mm Diameter Si Cz Crystal Growth[J].J.Cryst.Growth,2007,303(1):203-210.
    [11]宇惠平,隋允康,张峰栩,等.300mm的大直径直拉单晶硅勾形磁场下生长的数值模拟[J].无机材料学报,2005,20(2):453-458.
    [12]路小彬.多次透射反射红外光谱法灵敏和准确地测量单机硅中间隙氧和代位碳的含量[J].无机化学学报,2016,32(2),351-359.
    [13]付亚惠,李治明,刘建全.氧碳对太阳能级直拉单晶硅品质影响初探[J].青海科技,2011,3:35-37.
    [14]Nagai Y,Nakagawa S,Kashima K.Crystal Growth of MCZ Silicon with Ultralow Carbon Concentration[J].J.Cryst.Growth,2014,401:737-739.
    [15]http://www.str-soft.com/products/CGSim/.
    [16]关小军,张向宇,潘忠奔,等.热屏位置影响直拉单晶硅熔体和固液界面的模拟[J].人工晶体学报,2015,44(2):329-337.
    [17]CGSim,Graphical User Interface Reference Guide 15.1,STR Group.Inc.,St.Petersburg,Russia,2014.
    [18]苏文佳,左然,程晓农,等.多晶硅炉氩气导流系统设计与数值模拟优化[J].人工晶体学报,2014,44(5):1236-1243.
    [19]任丙彦,刘彩池,张志成,等.大直径直拉硅单晶炉热场的改造及数值模拟[J].人工晶体学报,2000,39(5):77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700