融合C80数据的绝热加速量热法热惯量因子修正
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ARC thermal inertia correction method based on C80 data merging
  • 作者:丁炯 ; 陈琪 ; 许启跃 ; 杨遂军 ; 叶树亮
  • 英文作者:DING Jiong;CHEN Qi;XU Qiyue;YANG Suijun;YE Shuliang;Institute of Industry and Trade Measurement Technology, China Jiliang University;
  • 关键词:反应动力学 ; 安全 ; 动力学模型 ; 热惯量因子 ; 绝热加速量热 ; 差示扫描量热
  • 英文关键词:reaction kinetic;;safety;;kinetic modeling;;thermal inertia factor;;accelerating rate calorimeter;;differential scanning calorimeter
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国计量大学工业与商贸计量技术研究所;
  • 出版日期:2018-10-29 16:59
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:浙江省自然科学基金项目(LQ15F030003,LY17F010011);; 浙江省基础公益研究计划项目(LGF18B030001);; 浙江省仪器科学与技术重中之重学科人才培育计划项目(JL150501)
  • 语种:中文;
  • 页:HGSZ201901047
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:427-434
摘要
受限于仪器原理,绝热加速量热法数据分析需进行热惯量因子修正。然而,现有的修正方法均违背由反应物比热及炉体温度动态追踪效果变化等引起热惯量因子动态变化的事实,导致动力学参数求取存在偏差。针对上述不足,提出一种基于C80与绝热加速量热数据联用的绝热加速量热热惯量因子修正及动力学计算方法。具体步骤如下:基于Friedman法分析C80数据获取无模型动力学参数,将其代入绝热数据求解反应体系比热容与等效热惯量因子乘积,并在绝热平衡方程中由上述乘积替代恒定热惯量因子及比热实现动力学计算。以过氧化二叔丁基(DTBP)和过氧化氢异丙苯(CHP)为实验对象进行实验验证。结果表明,基于两种量热模式联用的热惯量因子修正方法避免了热惯量动态变化对动力学分析的影响,从而获得更加准确的动力学参数。
        Due to the limit of the principle of accelerating rate calorimeter, thermal inertia factor correction is necessary for kinetics computation. However, the existing correction methods are contrary to the fact that the thermal inertia factor is shifty during the reaction process. Actually, the specific heat of the reactant and the efficiency of temperature tracking change with the reaction process. This leads to the kinetic computation errors. Inresponse to these deficiencies, a method is proposed that the dynamical thermal inertia factor correction based ondifferential scanning calorimeter(C80) and accelerating rate calorimeter(ARC) data merging. The details of themethod are as followed. Firstly, according to the Friedman method, the non-model kinetics parameters are obtainedwith the C80 data. Secondly, the product of the heat capacity and the equivalent thermal inertia factor is got throughusing the non-model kinetics parameters to solve the accelerating rate calorimeter data. Third, with the replacementof constant thermal inertia factor and the specific heat by the product, the kinetics results of ARC data arecalculated. To verify the validity of the proposed method, the experiments are performed by using di-tert-butylperoxide(DTBP) and cumene hydroperoxide(CHP). The results show that the proposed methods can avoid theinfluence of the dynamical thermal inertia factor in kinetic computation. It is worth popularizing in the thermal safety evaluation of chemical process.
引文
[1]孙金华,丁辉.化学物质热危险性评价[M].北京:科学出版社,2005.Sun J H, Ding H. Thermal Risk Evaluation of Chemical Substance[M]. Beijing:Science Press, 2005.
    [2] Iizuka Y, Surianarayanan M. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batch CAD[J]. Industrial&Engineering Chemistry Research, 2003, 42(13):2987-2995.
    [3] Sridhar V P, Surianarayanan M, Mandal A B. Accelerating rate calorimeter studies of water-induced thermal hazards of fireworks tip mixture[J]. Journal of Thermal Analysis&Calorimetry, 2013,112(3):1335-1341.
    [4] Kossoy A, Sheinman I. Effect of temperature gradient in sample cells of adiabatic calorimeters on data interpretation[J].Thermochimica Acta, 2010, 500(1):93-99.
    [5] Townsend D I, Tou J C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1):1-30.
    [6] Fisher H G, Goetz D D. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(5):305-316.
    [7] Fisher H G, Goetz D D. Determination of self-accelerating decomposition temperatures for self-reactive substances[J].Journal of Loss Prevention in the Process Industries, 1993, 6(3):183-194.
    [8] Kossoy A A, Singh J, Koludarova E Y. Mathematical methods for application of experimental adiabatic data—an update and extension[J]. Journal of Loss Prevention in the Process Industries,2015, 33(1):88-100.
    [9]尹瑞丽.热修正系数对绝热量热结果的影响研究[D].南京:南京理工大学, 2016.Yin R L. Impacts of thermal correction factor on adiabatic calorimetry results[D]. Nanjing:Nanjing University of Science and Technology, 2016.
    [10] Xu Q Y, Ding J, Yang S J, et al. Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses[J]. Thermochimica Acta, 2017, 657(1):104-109.
    [11] Wilcock E, Rogers R L. A review of the phi factor during runaway conditions[J]. Journal of Loss Prevention in the Process Industries,1997, 10(5):289-302.
    [12]周奕杉,陈利平,陈网桦,等.甲苯一段硝化产物TD24的获取[J].化工学报, 2014, 65(11):4383-4391.Zhou Y S, Chen L P, Chen W H, et al. TD24determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11):4383-4391.
    [13] Whitmore M W, Wilberforce J K. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures[J]. Journal of Loss Prevention in the Process Industries, 1993, 6(2):95-101.
    [14] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1):1-19.
    [15] Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1):183-195.
    [16] Kossoy A A, Koludarova E. Specific features of kinetics evaluation in calorimetric studies of runaway reactions[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4):229-235.
    [17] Roduit B, Hartmann M, Folly P, et al. Thermal decomposition of AIBN(Part B):Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. Thermochimica Acta, 2015, 621(1):6-24.
    [18] Miyake A, Sumino M, Oka Y, et al. Prediction and evaluation of the reactivity of self-reactive substances using microcalorimetries[J]. Thermochimica Acta, 2000, 352/353:181-188.
    [19] Chou Y P, Huang J Y, Tseng J M, et al. Reaction hazard analysis for the thermal decomposition of cumene hydroperoxide in the presence of sodium hydroxide[J]. Journal of Thermal Analysis&Calorimetry, 2008, 93(1):275-280.
    [20] Roduit B, Hartmann M, Folly P, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J].Thermochimica Acta, 2014, 579(5):31-39.
    [21] Kimura A, Otsuka T. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di-tert-butyl peroxide[J]. Journal of Thermal Analysis&Calorimetry, 2013, 113(3):1585-1591.
    [22]董泽,陈利平,陈网桦,等. 40%DCP溶液的热分解模型[J].化工学报, 2017, 68(5):1773-1779.Dong Z, Chen L P, Chen W H, et al. Thermal decomposition model for solution of 40%dicumyl peroxide[J]. CIESC Journal,2017,68(5):1773-1779.
    [23] Moukhina E. Thermal decomposition of AIBN Part C:SADT calculation of AIBN based on DSC experiments[J].Thermochimica Acta, 2015, 621(1):25-35.
    [24]黄艳军,谢传欣,曹居正,等.过氧化氢异丙苯热稳定性与热安全性研究[J].中国安全科学学报, 2011, 21(6):116-122.Huang Y J, Xie C X, Cao J Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6):116-122.
    [25]金满平,孙峰,石宁,等.水和弱酸对过氧化氢异丙苯热危险性的影响[J].化工学报, 2012, 63(12):4096-4102.Jin M P, Sun F, Shi N, et al. Influence of water and weak acid on thermal hazard of cumene hydroperoxide[J]. CIESC Journal, 2012,63(12):4096-4102.
    [26]孙峰,薛岩,谢传欣,等.有机过氧化物分解机理及热危害[J].化工学报, 2012, 63(8):2431-2436.Sun F, Xue Y, Xie C X, et al. Decomposition kinetics and thermal hazard of organic peroxides[J].CIESC Journal, 2012, 63(8):2431-2436.
    [27] Duh Y S, Kao C S, Hwang H H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety&Environmental Protection, 1998, 76(4):271–276.
    [28] Chen K Y, Wu S H, Wang Y W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J].Journal of Loss Prevention in the Process Industries, 2008, 21(1):101-109.
    [29]江美丽,郑俊鹤,王犇.过氧化二异丙苯的热稳定性及安全性研究[J].安全与环境学报, 2014, 14(1):117-121.Jiang M L, Zheng J H, Wang B. On the thermal stability and safety of dicumyl peroxide[J]. Journal of Safety&Environment, 2014, 14(1):117-121.
    [30]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社, 2001.Hu R Z, Shi Q Z. Thermal Analysis Kinetics[M]. Beijing:Science Press, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700