广东不同起源枫香各器官的含碳系数及碳储量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon content coefficient and storage in different origins of Liquidambar formosana in Guangdong Province
  • 作者:徐期瑚 ; 林丽平 ; 薛春泉 ; 张红爱 ; 张亮 ; 雷渊才
  • 英文作者:XU Qihu;LIN Liping;XUE Chunquan;ZHANG Hong'ai;ZHANG Liang;LEI Yuancai;Guangdong Forestry Inventory and Planning Institute;Research Institute of Forest Resource Information Techniques,Chinese Academy of Forestry;
  • 关键词:含碳系数 ; 碳储量 ; 枫香 ; 广东
  • 英文关键词:carbon content coefficient;;carbon storage;;Liquidambar formosana Hance;;Guangdong
  • 中文刊名:FJLB
  • 英文刊名:Journal of Forest and Environment
  • 机构:广东省林业调查规划院;中国林业科学研究院资源信息研究所;
  • 出版日期:2018-07-15
  • 出版单位:森林与环境学报
  • 年:2018
  • 期:v.38
  • 基金:广东省林业科技专项“广东主要碳汇造林树种生物量模型研建”(2015-02);; 广东省林业科技创新平台建设项目“广东省碳汇计量监测创新平台建设”(2016CXPT03)
  • 语种:中文;
  • 页:FJLB201803010
  • 页数:8
  • CN:03
  • ISSN:35-1327/S
  • 分类号:64-71
摘要
为快速精确计量和监测森林碳汇造林项目的碳储量变化,以广东第八次森林资源连续清查数据中枫香的分布为基础,按2、4、6、8、12、16、20、26、32、38 cm共10个径阶伐倒90株枫香样木,获取枫香树干、树皮、树叶、树枝、树根各器官生物量及含碳系数数据,并计算90株单木的碳储量。结果表明:广东枫香平均含碳系数为0.535 4,各器官含碳系数排列顺序为树干(0.547 4)﹥树枝(0.534 4)﹥树根(0.531 8)﹥树叶(0.499 2)﹥树皮(0.495 7),树皮、树叶含碳系数显著低于其它各器官;枫香人工林各器官含碳系数均低于天然林,但二者差异不大;各器官碳储量在全株中的比例从大到小排列顺序为树干﹥树根﹥树枝﹥树皮﹥树叶;随着胸径增加,枫香人工林树干、树皮、树叶碳储量比例先增加后减少,树枝、树根碳储量比例先减少后增加;枫香天然林树干、树枝碳储量的比例增加,树皮、树叶、树根碳储量比例减少;拟合出枫香人工林最优全株碳储量模型依次为C_T=900.012 5/(1+579.431 1e~(-0.179 5A))、C_T=0.433 3D~(3.481 6)H~(-1.914 5),R_(adj)~2值依次为0.82,0.90;天然林最优全株碳储量模型依次为C_T=898.378 7e~(-46.587 1/A)、C_T=0.106D~(1.372 4)H~(1.079 8),R_(adj)~2值依次为0.70,0.94。枫香人工林与天然林碳储量模型拟合效果无明显差别;相较于以胸径和树高等易测因子建立的碳储量模型,以年龄为自变量的碳储量模型拟合效果明显要差一些;人工林与天然林碳储量自然生长的极值没有明显差别。
        In order to quickly and precisely calculate and monitor forest carbon-sink in afforestation projects,based on the 8 th consecutive forest inventory data of the distribution of Liquidambar formosana in Guangdong Province in 2012,all 90 sample trees of L. formosana were obtained which contained 10 diameter classes( i. e. 2,4,6,8,12,16,20,26,32 and 38 cm),to calculate the carbon storage of individual tree of L. formosana,including the component of stem wood,bark,leaf,branch and roots. The results showed that: the average carbon content coefficient of L. formosana in Guangdong was 0. 535 4,and the carbon content coefficient in each component was: stem( 0.547 4) >branch( 0.534 4) >root( 0.531 8) >leaf( 0.499 2) > bark( 0.495 7). The carbon content coefficient of bark and leaf were significantly lower than other components. Carbon content coefficient in specific component of L. formosana plantation forests were lower than natural forests,but there was no significant difference between them. The proportion of carbon storage in each component was: stem > root > branch > bark > leaf. With the increased of DBH,the proportion carbon storage of stem,bark and leaf in plantation forest increased first and then decreased,the branch and root decreased first and then increased. In the natural forest,the proportion carbon storage of stem and branch increased,but the bark,leaf and root decreased. The optimal carbon storage model of L. formosana plantation were C_T= 900.012 5/( 1+579.431 1 e~(-0.179 5 A)),C_T= 0.433 3 D~(3.481 6) H~(-1.914 5),and the R_(adj)~2 were 0. 82,0. 90,respectively. The optimal carbon storage model of natural L. formosana forests were C_T= 898.378 7 e-46.587 1/A,C_T= 0.106 D~(1.372 4) H~(1.079 8),and the R_(adj)~2 were 0. 70,0. 94,respectively. There is no significant difference between plantation and natural forest in model simulation effect and extreme growth value of carbon storage. The carbon storage model established by the combination of DBH and height was better than the model established by age as independent variable.
引文
[1]RIND D.Complexity and climate[J].Science,1999,284(5 411):105-107.
    [2]POPE J.How can global warming be traced to CO2?[J].Scientific American,2006,295(6):124.
    [3]POST W M,EMANUEL W R,ZINKE P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298(5 870):156-159.
    [4]PAN Y D,LUO T X,BIRDSEY R,et al.New estimates of carbon storage and sequestration in China's forests:effects of age-class and method on inventory-based carbon estimation[J].Climatic Change,2004,67(2/3):211-236.
    [5]FANG J Y,CHEN A P,PENG C H,et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292(5 525):2 320-2 322.
    [6]李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量[J].林业科学,2011,47(7):7-12.
    [7]王开德,邓璐莹.基于森林清查资料的福建森林植被碳储量及其动态变化[J].福建林学院学报,2014,34(2):145-151.
    [8]刘曦乔,梁萌杰,陈龙池,等.湖南省森林生态系统碳储量、碳密度及其空间分布[J].生态学杂志,2017,36(9):2 385-2 393.
    [9]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517.
    [10]HOUGHTON R A,SKOLE D L,NOBRE C A,et al.Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J].Nature,2000,403(6 767):301-304.
    [11]曾伟生,唐守正,黄国胜,等.全国立木生物量建模总体划分与样本构成研究[J].林业资源管理,2010(3):16-23.
    [12]国家林业局森林资源管理司.立木生物量建模样本采集技术规程:LY/T 2259-2014[S].北京:中国标准出版社,2014.
    [13]李斌,方晰,田大伦,等.湖南省现有森林植被主要树种的碳含量[J].中南林业科技大学学报,2015,35(1):71-78.
    [14]杨旭东.贵州省东南部常见森林类型含碳率分析[C]∥第十五届中国科协年会论文集.贵阳:中国科学技术协会,2013:9-14.
    [15]国家林业局森林资源管理司.立木生物量模型及碳计量参数枫香:LY/T 2661-2016[S].北京:中国标准出版社,2016.
    [16]田大伦,王新凯,方晰,等.喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布[J].林业科学,201l,47(9):7-14.
    [17]王春梅,邵彬,王汝南.东北地区两种主要造林树种生态系统固碳潜力[J].生态学报,2010,30(7):1 764-1 772.
    [18]ZHANG Q Z,WANG C K,WANG X C,et al.Carbon concentration variability of 10 Chinese temperate tree species[J].Forest Ecology and Management,2009,258(5):722-727.
    [19]廖小锋,谢元贵,赵晓朋.喀斯特峰丛洼地适生植物碳储量异质性对比研究[J].广东农业科学,2015,42(20):129-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700