渤海西南部新近系超薄储层定量预测技术研究与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and application of quantitative prediction technique for ultrathin reservoir in the neogene of southwestern Bohai sea
  • 作者:陈文雄
  • 英文作者:CHEN Wen-xiong;Bohai Oilfield Research Institute,Tianjin Branch of CNOOC Limited;
  • 关键词:超薄储层 ; 部分道集叠加 ; 谱蓝化 ; 匹配追踪 ; 倾角滤波
  • 英文关键词:Ultrathin reservoir;;Partial gathers stack;;Spectrum blue;;Matching pursuit;;Inclination filter
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中海石油(中国)有限公司天津分公司渤海石油研究院;
  • 出版日期:2018-07-25 14:50
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 语种:中文;
  • 页:DQWJ201902036
  • 页数:8
  • CN:02
  • ISSN:11-2982/P
  • 分类号:284-291
摘要
渤海西南部新近系明化镇组主要为极浅水三角洲和曲流河沉积,受特定沉积环境的控制,发育大量厚度小于λ/8(λ为视波长)的超薄储层,利用常规地球物理手段难以进行定量预测.为定量预测此类超薄储层,本文通过对多项地球物理技术改造升级与优化组合,建立了一套完整的超薄储层定量预测技术,具体包括两项关键子技术.(1)基于薄储层的地震高分辨率处理技术.首先优选能较好继承地震有效信息的部分地震道进行叠加,然后开展基于ARMA的谱蓝化处理,提高地震资料分辨率.(2)基于薄储层的解释性优化处理技术.在地震资料高分辨率处理基础上进行基于匹配追踪算法的子波重构处理,将薄储层的地震反射信息进行小幅度放大,然后进行倾角中值滤波和倾角扩散滤波处理,有效压制数据中的随机噪声和突出储层边界,使得地震资料可解释性增强.技术成果应用于渤海A油田,成效显著,同时取得两点主要认识:(1)方法可识别厚度小于λ/8的超薄储层,在渤海西南部海域取得了成功应用,对陆相断陷盆地浅层超薄储层预测具有较好借鉴意义;(2)方法针对薄储层进行地震优化处理,为凸显薄储层地震响应,一定程度破坏了适中厚度和厚储层的地震响应,不能做到薄、厚储层同时预测.
        The Minghua town formation of neogene in the southwestern Bohai sea is mainly composed of extremely shallow delta and meandering river, under the control of specific sedimentary environment, a large number of ultrathin reservoir with thickness less than λ/8(λ is visual wavelength) are developed, and it is difficult to predict quantitatively by conventional geophysical methods. To quantitatively predict such ultrathin reservoir,in this paper, through the upgrading and optimize combination of a number of geophysical technologies, a complete set of quantitative prediction technology for ultrathin reservoir has been established, and it mainly includes two key sub-technology.(1) seismic high-resolution processing based on thin reservoir. First, part of the seismic trace that can better inherit seismic effective information are superimposed, and then spectral blue processing based on ARMA is performed to improve seismic data resolution.(2) Interpretive optimization based on thin reservoir. Wavelet reconstruction based on matching pursuit algorithm for high resolution seismic data, and slightly enlarge the seismic amplitude of thin reservoir, then tilt median filtering and tilt diffusion filter processing, effectively suppress random noise in data and highlight reservoir boundaries, enhanced seismic data's interpretability. The technical achievements have been applied to the Bohai A oilfield with remarkable results; at the same time achieved two major understanding:(1) the method can identify that the thickness of the ultrathin reservoir is less than λ/8, successful application in the southwestern Bohai sea, it has a good reference for the prediction of shallow ultrathin reservoir in continental faulted basins;(2) the method for seismic optimization of thin reservoir, to highlight the seismic response of thin reservoir, a certain extent destroyed the seismic response of moderate thickness and thick reservoir, cannot predict thin and thick reservoir at the same time.
引文
Chakraborty A, Okaya D. 1995. Frequency-time decomposition of seismic data using wavelet-based methods[J]. Geophysics, 60(6): 1906-1916.
    Dai S H, Chen Z G, Yu J B, et al. 2011. Application of multiwavelet decomposition and reconstruction technology in reservoir description of TKT-NGS oilfield in Algeria[J]. Oil Geophysical Prospecting (in Chinese), 46(1): 103-109.
    Huang Y, Xu D, Wen X K. 2013. Multiwavelet decomposition and reconstruction of neutron waves[J]. Geophysical Prospecting for Petroleum (in Chinese), 46(1): 103-109.
    Ji T T, Zhang W, Ren H, et al. 2015. Application of Spectral Bluing Frequency-Broadening Technique in Chunguang Block[J]. Unconventional Oil & Gas (in Chinese), 2(3): 22-26.
    Li G F, Xiong J L, Zhou H, et al. 2008. Seismic reflection characteristics of fluvial sand and shale interbedded layers[J]. Applied Geophysics, 5(3): 219-229.
    Li L L, Wei D L. 2007. Application of LIFTdenoising method in seismic data processing[J]. Geophysical Prospecting for Petroleum (in Chinese), 46(2): 193-195.
    Mallat S G, Zhang Z. 1993. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 41(12): 3397-3415.
    Nie A L, Zhi M, Zhang X X, et al. 2012. Shallow Reflection Seismic Prestack Noise Separation Technology Based on Dip Median Filtering Method[J]. Coal Geology of China (in Chinese), 24(2): 56- 60.
    Peng G X, Wang W L, Chen M, et al. 2013. Statistical Feature Analysis of Reflection Coefficient and Its Application in High Resolution Seismic Data Processing[J]. Journal of Oil and Gas Technology (in Chinese), 35(4): 55-58.
    Qiu N. 2012. Research on seismic wavelet decomposition and reconstruction technology (in Chinese) [ Master’s thesis]. Ocean University of China.
    Shi D X. 1994. New method of finding angles in AVO analysis[J]. Oil Geophysical Prospecting (in Chinese), 29(S1): 10-19.
    Sun X P, Du S T, Tang L. 2004. Coherent enhanced anisotropic diffusion filtering[J]. Oil Geophysical Prospecting (in Chinese), 39(6): 651- 655, 665.
    Wang W L, Li G F, Gui J Y. 2013. Colored deconvolution of mixed phase wavelet[J]. Lithologic Reservoirs (in Chinese), 25(3): 82-86.
    Wang Y. 2006. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 72(1): V13-V20.
    Wang Z R, Liu X W, Ma Z G. 2000. F-x projection filtering attenuates random noise[J]. Journal of Changchun University of science and technology (in Chinese), 30(4): 393-396.
    Wen S L, Zhang Y P, He H Y. 2000. Application of Overlapping Channels in High Resolution Seismic Data Processing at Sea[J]. China Offshore Oil and Gas (in Chinese), 14(4): 283-287, 292.
    Xu C G, Jiang P H, Wu F D, et al. 2002. The discovery of the Upper Tertiary Delta and sedimentary characteristics and its significance for oil and gas exploration of Bozhong depression[J]. Acta Sedimentologica Sinica (in Chinese), 20(4): 588-594.
    Xu T J, Shen Z M, Wen X K. 2010. Research on Application of Multiwavelet Decomposition and Reconstruction Technology[J]. Journal of Chengdu University of Technology(Science & Technology Edition) (in Chinese), 37(6): 660- 665.
    Yang R Z, Zhao Z G, Ma Y L, et al. 2013. Resolution of Thin Coal Seams by Spectral Blue and Color Inversion[J]. Natural Gas Geoscience (in Chinese), 24(1): 156-161.
    Zhang C M, Yin T J, Zhu Y J, et al. 2010. Shallow-water Delta Deposition Model[J]. Acta Sedimentologica Sinica (in Chinese), 28(5): 933-944.
    Zhang G Z, Wang W L, Yin X Y, et al. 2011. Overview of extraction methods of angle gathers based on ray theory[J]. Progress in Gecphysics (in Chinese), 26(5): 1696-1707, doi: 10.3969/j.issn.1004-2903.2011.05.024.
    Zhou D H, Zhang Z J, Tan H H. 2015. Super-thick reservoir characterization technique based on spectral inversion and its application on extremely shallow sand-rich delta,Bohai sea[J]. China Offshore Oil and Gas (in Chinese), 27(3): 25-30.
    Zhu W L, Li J P, Zhou X H, et al. 2008. Sedimentary system of shallow water delta in the Bohaisea and exploration of large-scale oil and gas fields[J]. Acta Sedimentologica Sinica (in Chinese), 26(4): 575-582.
    代双和, 陈志刚, 于京波, 等. 2011. 多子波分解与重构技术在阿尔及利亚TKT—NGS油田储层描述中的应用[J]. 石油地球物理勘探, 46(1): 103-109.
    黄跃, 许多, 文雪康. 2013. 多子波分解与重构中子波的优选[J]. 石油物探, 52(1): 17-22.
    纪甜甜, 张武, 任红, 等. 2015. 谱蓝化拓频处理技术在春光区块的应用[J]. 非常规油气, 2(3): 22-26.
    李来林, 魏大力. 2007. LIFT去噪方法在地震资料处理中的应用[J]. 石油物探, 46(2): 193-195.
    聂爱兰, 智敏, 张宪旭, 等. 2012. 基于倾角中值滤波法的浅层反射地震叠前信噪分离技术[J]. 中国煤炭地质, 24(2): 56- 60.
    彭更新, 王万里, 陈猛, 等. 2013. 反射系数统计特征分析及其在高分辨率地震资料处理中的应用[J]. 石油天然气学报, 35(4): 55-58.
    邱娜. 2012. 地震子波分解与重构技术研究[硕士论文]. 中国海洋大学.
    石殿祥. 1994. AVO分析中求角道集新方法[J]. 石油地球物理勘探, 29(S1): 10-19.
    孙夕平, 杜世通, 汤磊. 2004. 相干增强各向异性扩散滤波技术[J]. 石油地球物理勘探, 39(6): 651- 655, 665.
    王万里, 李国发, 桂金咏. 2013. 混合相位子波有色反褶积[J]. 岩性油气藏, 25(3): 82-86.
    王忠仁, 刘学伟, 马中高. 2000. F-x投影滤波衰减随机噪声[J]. 长春科技大学学报, 30(4): 393-396.
    温书亮, 张云鹏, 何汉漪. 2000. 少道叠加在海上高分辨率地震资料处理中的应用[J]. 中国海上油气, 14(4): 283-287, 292.
    徐长贵, 姜培海, 武法东, 等. 2002. 渤中坳陷上第三系三角洲的发现、沉积特征及其油气勘探意义[J]. 沉积学报, 20(4): 588-594.
    徐天吉, 沈忠民, 文雪康. 2010. 多子波分解与重构技术应用研究[J]. 成都理工大学学报(自然科学版), 37(6): 660- 665.
    杨瑞召, 赵争光, 马彦龙, 等. 2013. 利用谱蓝化和有色反演分辨薄煤层[J]. 天然气地球科学, 24(1): 156-161.
    张昌民, 尹太举, 朱永进, 等. 2010. 浅水三角洲沉积模式[J]. 沉积学报, 28(5): 933-944.
    张广智, 王文龙, 印兴耀, 等. 2011. 基于射线理论的角度道集提取方法综述[J]. 地球物理学进展, 26(5): 1696-1707, doi: 10.3969/j.issn.1004-2903.2011.05.024.
    周东红, 张志军, 谭辉煌. 2015. 基于谱反演的超限厚储层描述技术及其在渤海海域“富砂型”极浅水三角洲储集层的应用[J]. 中国海上油气, 27(3): 25-30.
    朱伟林, 李建平, 周心怀, 等. 2008. 渤海新近系浅水三角洲沉积体系与大型油气田勘探[J]. 沉积学报, 26(4): 575-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700