Ti6321钛合金高温力学性能和显微组织的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on high temperature mechanical property and microstructure of Ti6321 titanium alloy
  • 作者:徐雪峰 ; 王琳 ; 程兴旺 ; 刘安晋 ; Tayyeb ; Ali ; 周哲 ; 宁子轩 ; 张斌斌 ; 赵登辉
  • 英文作者:XU Xuefeng;WANG Lin;CHEN Xingwang;LIU Anjin;ALI Tayyeb;ZHOU Zhe;NING Zixuan;ZHANG Binbin;ZHAO Denghui;School of Materials Science and Engineering,Beijing Institute of Technology;National Key Laboratory of Science and Technology on Materials under Shock and Impact;State Key Laboratory of Explosion Science and Technology;Luoyang Ship Materials Research Institute;China Ordnance Industrial Standardization Research Institute;
  • 关键词:Ti6321钛合金 ; 高温压缩 ; 热变形 ; 绝热剪切带 ; 再结晶
  • 英文关键词:titanium alloy;;high temperature compression;;hot compressive deformation;;adiabatic shear band;;recrystallization
  • 中文刊名:ZTSX
  • 英文刊名:Chinese Journal of Stereology and Image Analysis
  • 机构:北京理工大学材料学院;冲击环境材料技术国家级重点实验室;爆炸科学与技术国家重点实验室;洛阳船舶材料研究所;中国兵器工业标准化研究所;
  • 出版日期:2019-06-25
  • 出版单位:中国体视学与图像分析
  • 年:2019
  • 期:v.24;No.94
  • 基金:爆炸科学与技术国家重点实验室基金(No.YBKT-17-06)
  • 语种:中文;
  • 页:ZTSX201902004
  • 页数:8
  • CN:02
  • ISSN:11-3739/R
  • 分类号:32-39
摘要
通过固溶处理获得钛合金Ti6321的近等轴双相组织(T1)和魏氏组织(T2)两种试样,研究不同组织初始对材料在高温实验条件下的力学性能和变形行为的影响。利用Gleeble热力模拟试验机对材料进行高温压缩实验,变形温度为700~900℃,应变速率为1 s-1和10 s-1,结合OM和SEM等表征方法对其微观组织演化进行观察分析。结果表明:高温条件下,T2具有较高的强度。随实验温度升高,两种组织Ti6321钛合金均出现明显的软化效应,强度值降低约300 MPa。两种试样在加载后的显微组织均发生了明显的变化,两种组织晶粒沿载荷方向被显著拉长;其中T1试样发生了再结晶现象,随着温度升高,再结晶程度加剧,次生α相和β相构成的片层组织含量显著降低;T2试样在较低温度变形时产生了绝热剪切带,剪切带附近晶粒发生严重变形、碎化,随着实验温度升高,片层组织软化严重且沿受力方向扭曲变形加剧。
        The duplex(T1) and lamellar(T2) structures were obtained by heat treatments of Ti6321 alloy.The influence of different structures on the high temperature mechanical property and deformation behavior of the material were investigated under Gleeble test.The Gleeble hot-mechanical simulator was used to test the samples under dynamic high temperature compression loading,ranging the temperature from 700 ~ 900℃,and the strain rates are 1 s-1 and 10 s-1.The microstructure evolution was analyzed by OM and SEM.The experiment results demonstrate that high temperature strength of T2 is higher.With the increase of experimental temperature,Ti6321 titanium alloy exhibits obvious softening effect,and the strength value decreases by about 300 MPa.All samples deform significantly after high temperature compression loading.The grains of the two microstructures are obviously elongated along the load direction.The recrystallization occurs in the samples of T1,increasing the degree of recrystallization with the increase of temperature.The content of T2 composed of the secondary α phase and β phase is significantly decreased.Adiabatic shear bands occur in the lamellar structure at a lower temperature deformation,and the grains near the shear band were severely deformed and crushed.As the experimental temperature increased,the distortion the lamellar structure was intensified along the direction of the force.
引文
[1]Banerjee D,Williams J C.Perspectives on titanium science and technology[J].Acta Materialia,2013,61(3):844-879.
    [2]赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展,2010,29(5):1-8.Zhao Yongqing.Current situation and development trend of titanium alloys[J].Materials China,2010,29(5):1-8.
    [3]Park C H,Lee B,Semiatin S L,et al.Low-temperature super plasticity and coarsening behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J].Materials Science and Engineering:A,2010,527(20):5203-5211.
    [4]Niu Y,Hou H,Li M,et al.High temperature deformation behavior of a near alpha Ti600 titanium alloy[J].Materials Science and Engineering:A,2008,492(1-2):24-28.
    [5]Jia W,Zeng W,Zhou Y,et al.High-temperature deformation behavior of Ti60 titanium alloy[J].Materials Science and Engineering:A,2011,528(12):4068-4074.
    [6]孙建科,孟祥军,陈春和,等.我国船用钛合金研究、应用及发展[J].金属学报,2002,1(38):33-36.Sun Jianke,Meng Xiangjun,Chen Chunhe,et al.Research,application and development of shipbuilding titanium alloy in China[J].ACTA Metallurgica Sinca,2002,1(38):33-36.
    [7]陈军,赵永庆,常辉.中国船用钛合金的研究和发展[J].材料导报,2005,19(6):67-70.Chen Jun,Zhao Yongqing,Chang Hui.Research and development of titanium alloy for shipbuilding in China[J].Material Reports,2005,19(6):67-70.(In Chinese)
    [8]孟祥军,时锦.漫谈钛合金在舰船上的应用[J].钛工业进展,2003,20(4):23-26.Meng Xiangjun,Shi Jin.Application of titanium alloys for naval vessels[J].Titanium Industry Progress,2003,20(4):23-26.
    [9]Wang Q,Ren J Q,Wu Y K,et al.Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy[J].Journal of Alloys and Compounds,2019,789:249-255.
    [10]陈海生,罗锦华,王涛,等.热处理对Ti-6Al-3Nb-2Zr-1Mo合金组织和性能的影响[J].热加工工艺,2016,45(4):217-220.Chen Haisheng,Luo Jinhua,Wang Tao,et al.Effect of heat treatment on microstructure and properties of Ti-6Al-3Nb-2Zr-1Mo alloy[J].Hot Working Technology,2016,45(4):217-220.
    [11]Gao F,Gao Q,Jiang P,et al.Microstructure and mechanical properties of Ti6321 alloy welded joint by EBW[J].International Journal of Lightweight Materials and Manufacture,2018,1(4):265-269.
    [12]Gao F,Gao Q,Jiang P,et al.Microstructure and properties of titanium alloy electron beam weldments based on the different heat input conditions of the same line energy[J].Vacuum,2017(146):136-141.
    [13]Wanjara P,Jahazi M,Monajati H,et al.Hot working behavior of near-αalloy IMI834[J].Materials Science and Engineering:A,2005,396(1-2):50-60.
    [14]Shamsolhodaei A,Zarei-Hanzaki A,Ghambari M,et al.The high temperature flow behavior modeling of Ni Ti shape memory alloy employing phenomenological and physical based constitutive models:A comparative study[J].Intermetallics,2014(53):140-149.
    [15]He D,Zhu J C,Lai Z H,et al.An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy[J].Materials&Design,2013(46):38-48.
    [16]Braga H C,Barbosa R,Breme J.Hot strength of Ti and Ti6Al4V deformed in axial compression[J].Scripta Metallurgica et Materialia,1993,28(8):979-983.
    [17]任宇.冲击波作用下钛合金微结构演化及其对层裂行为的影响规律研究[D].北京:北京理工大学,2014.Ren Yu.Research on microstructure evolution and its influences on spall fracture behavior of titanium alloys under shock wave loading[D].Beijing:Beijing Institute of Technology,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700