铜绿微囊藻污染下滇池草海表层沉积物中各形态磷的含量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contents of Different Forms of Phosphorus in Surface Sediments of Caohai of Dianchi Lake under Microcystis aeruginosa Pollution
  • 作者:邓洪 ; 刘惠见 ; 包立 ; 黄维恒 ; 杨浩瑜 ; 张乃明 ; 张仕颖 ; 董新星
  • 英文作者:DENG Hong;LIU Huijian;BAO Li;HUANG Weiheng;Yang Haoyu;ZHANG Naiming;ZHANG Shiying;Dong Xinxing;Yunnan Agricultural University;Yunnan Soil Fertility and Pollution Remediation Engineering Laboratory;
  • 关键词:草海 ; 沉积物 ; 磷的形态 ; 铜绿微囊藻
  • 英文关键词:Caohai;;sediments;;phosphorus forms;;Microcystis aeruginosa
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:云南农业大学资源与环境学院;云南省土壤培肥与污染修复工程实验室;
  • 出版日期:2018-12-15
  • 出版单位:湿地科学
  • 年:2018
  • 期:v.16
  • 基金:云南省科技创新人才计划项目(2015HC018);; 云南省对外科技合作计划—院士专家工作站项目(2015IC022);; 云南省社会发展科技计划项目(2012CA017)资助
  • 语种:中文;
  • 页:KXSD201806017
  • 页数:8
  • CN:06
  • ISSN:22-1349/P
  • 分类号:118-125
摘要
通过设置3种浓度的铜绿微囊藻(Microcystis aeruginosa)污染的模拟实验,研究滇池草海表层(0~20 cm深度)沉积物中各形态磷含量的变化规律。研究结果表明,在低、中和高浓度铜绿微囊藻污染下,表层沉积物中的平均全磷质量比分别为1 245.61 mg/kg、1 241.04 mg/kg和1 230.80 mg/kg;在中浓度铜绿微囊藻污染下,表层沉积物中的有机磷和钙结合态磷质量比分别由实验开始时的560.05 mg/kg和558.39 mg/kg降至实验结束时的420.96mg/kg和510.98 mg/kg,铁结合态磷和铝结合态磷质量比分别由实验开始时的66.07 mg/kg和175.24 mg/kg增至实验结束时的86.21 mg/kg和188.06 mg/kg,说明铜绿微囊藻浓度增大会促进表层沉积物中内源磷的释放。在中、高浓度铜绿微囊藻污染下,表层沉积物中的全磷含量分别与钙结合态磷含量和有机磷含量显著正相关,钙结合态磷和有机磷是表层沉积物中全磷内源负荷的主要磷形态。在高浓度铜绿微囊藻污染下,叶绿素a含量与铝结合态磷含量显著相关,铝结合态磷是对叶绿素a含量增加贡献最大的磷形态。控制表层沉积物内源磷中钙结合态磷和有机磷的释放,降低铜绿微囊藻对沉积物铝结合态磷的吸收,是减少蓝藻暴发的有效途径。
        In this study, the change laws of different forms of phosphorus contents in surface sediments of Caohai was studied by setting up simulation experiment under different concentrations of Microcystis aeruginosa. The results showed that the average value of total phosphorus contents in surface sediments were 1 245.61 mg/kg,1 241.04 mg/kg and 1 230.80 mg/kg under Microcystis aeruginosa pollution of low, medium and high concentrations. Under the condition of medium concentration of Microcystis aeruginosa, the contents of organic phosphorus and calcium-bound phosphorus decreased from the initial values of 560.05 mg/kg and 558.39 mg/kg to420.96 mg/kg and 510.98 mg/kg in the end, respectively, while the contents of ferrum-bonded phosphorus and aluminum-bonded phosphorus increased from the initial values of 66.07 mg/kg and 175.24 mg/kg to 86.21 mg/kg and 188.06 mg/kg in the end, respectively. The results explained that the increased concentration of Microcystis aeruginosa could promote the release of endogenous phosphorus in sediments. Under medium and high concentration of Microcystis aeruginosa, there was a significantly positive correlation between total phosphorus content and calcium bound phosphorus content and organic phosphorus content. Calcium-bound phosphorus and organic phosphorus were the main phosphorus forms of total phosphorus load in surface sediments.Chlorophyll-a content was positively correlated with aluminum bound phosphorus contents under high concentration of Microcystis aeruginosa, and aluminum bound phosphorus was the most important phosphorus form contributing to chlorophyll-a growth. Therefore, controlling the release of calcium-bound phosphorus and organic phosphorus in surface sediments and reducing the absorption of aluminum-bound phosphorus by Microcystis aeruginosa in parallel is an effective way to reduce the bloom of Cyanobacteria.
引文
[1]吴文颖,袁龙义,厉恩华,等.富营养化湖泊沉积物磷释放特点及水生植物对其的影响[J].湖北农业科学, 2007, 4646(6):1031-1034.
    [2]胡鹏,姚义鸣,胡智弢,等.盐碱地区沉积物磷释放特性及影响因素[J].环境工程学报, 2013, 7(9):3327-3332.
    [3]张雷燕,李柯,刘正文.太湖不同污染程度底泥对磷滞留能力的比较[J].农业环境科学学报, 2010, 2929(3):546-550.
    [4]Kelderman P. Sediment-water exchange in Lake Grevelingen under different environmental conditions[J]. Netherlands Journal of Sea Research, 1984, 1818(3):286-311.
    [5]黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态[J].湖泊科学, 2006, 1818(3):199-206.
    [6]夏学惠,东野脉兴,周建民,等.滇池现代沉积物中磷的地球化学及其对环境影响[J].沉积学报, 2002, 2020(3):416-420.
    [7]沈乐.重污染河道疏浚程度对底泥中总氮释放的影响[J].水资源保护, 2011, 2727(2):6-8, 12.
    [8]代龚圆,李杰,李林,等.滇池北部湖区浮游植物时空格局及相关环境因子[J].水生生物学报, 2012, 3636(5):946-956.
    [9]陈婷婷,王宇,刘艇,等.底泥中磷分布特征的研究进展[J].吉林农业科学, 2010, 3535(3):35-36, 56.
    [10]陈桂香,高灯州,王志萍,等.鳝鱼滩湿地不同围垦年限养殖塘沉积物中碳、氮和磷含量及其污染风险评价[J].湿地科学,2017, 1515(2):309-314.
    [11]Gomez E, Durillon C, Rofes G, et al. Phosphate adsorption and release from sediments of brackish lagoons:pH, O2and loading influence[J]. Water Research, 1999, 3333(10):2437-2447.
    [12]李宝,范成新,丁士明,等.滇池福保湾沉积物磷的形态及其与间隙水磷的关系[J].湖泊科学, 2008, 2020(1):27-32.
    [13]Williams J D H, Syers J K, Armstrong D E, et al. Characterization of inorganic phosphate in Noncalcareous Lake sediments[J].Soil Science Society of America Journal, 1971, 35(4):556-561.
    [14]Cnrignan R, Kalff J. Phosphorus release by submerged macrophytes:Significance to epiphyton and phytoplankton[J]. Limnology and Oceanography, 1982, 2727(3):419-427.
    [15]Riber H H. Phosphorus uptake from water by the macrophyte-eiphyte complex in a Danish lake:Relationship to plankton[J].Verh.int. Ver. Limnol, 1984, 2222(2):790-794.
    [16]Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment[J]. Limnology and Oceanography, 1988, 3333(4part2):796-822.
    [17]曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报, 2000, 111(3):445-448.
    [18]王汉奎,董俊德,张偬,等.三亚湾氮磷比值分布及其对浮游植物生长的限制[J].热带海洋学报, 2002, 2121(1):33-39.
    [19]刘铁梅,何秀玲,罗隽.富营养化浅水湖泊修复的生物操纵理论[J].广州化工, 2012, 4040(20):103-105.
    [20]何佳,陈春瑜,邓伟明,等.滇池水—沉积物界面磷形态分布及潜在释放特征[J].湖泊科学, 2015, 2727(5):799-810.
    [21]史静,俎晓静,张乃明,等.滇池草海沉积物磷形态、空间分布特征及影响因素[J].中国环境科学, 2013, 3333(10):1808-1813.
    [22]史丽琼.滇池水体及表层沉积物—水界面各形态磷分布特征研究[D].昆明:昆明理工大学, 2011.
    [23]杨娇,王智,厉恩华,等.滇池不同底泥条件下黑藻和金鱼藻的生长生理特征[J].湿地科学, 2015, 1313(4):430-436.
    [24]王小雷.云南高原湖泊近现代沉积环境变化研究[D].南京:南京师范大学, 2011.
    [25]安琪,李发荣.滇池草海底泥疏浚对水体水质及底泥影响分析研究[J].云南地理环境研究, 2002, 1414(2):65-69.
    [26] RydinE. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 3434(7):2037-2042.
    [27]潘晓洁,常锋毅,沈银武,等.滇池水体中微囊藻毒素含量变化与环境因子的相关性研究[J].湖泊科学, 2006, 188(6):572-578.
    [28]陈俊,李大鹏,朱培颖,等.扰动和加藻共同作用下太湖沉积物中形态磷变化规律[J].环境科学, 2015, 36(12):4509-4515.
    [29]王雪蕾,王金生,王宁.四平市二龙湖底泥磷释放研究[J].环境工程学报, 2005, 66(9):47-50.
    [30]杜诗云,杨常亮,李世玉,等.阳宗海沉积物中磷的稳定性[J].环境工程学报, 2015, 99(3):1072-1078.
    [31]武晓飞,李大鹏,汪明,等.反复扰动下加藻对不同形态磷相互转化的影响[J].中国环境科学, 2015, 3535(4):1187-1196.
    [32]武晓飞,李大鹏,汪明.沉积物短期扰动下BAPP再生和转化机制[J].环境科学, 2014, 3535(1):171-178.
    [33]金湘灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [34]蒋增杰,方建光,张继红,等.桑沟湾沉积物中磷的赋存形态及生物有效性[J].环境科学, 2007, 2828(12):2783-2788.
    [35]王琦.浅水湖泊沉积物磷释放的生物学机制研究[D].杨凌:西北农林科技大学, 2006.
    [36]孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J].环境化学, 2006, 2525(1):24-27.
    [37]李大鹏,黄勇.扰动强度对太湖沉积物中磷释放及其形态转化的影响[J].环境科学, 2012, 3333(8):2614-2620.
    [38]陈永川,汤利,谌丽,等.滇池水体中磷的时空变化特征研究[J].农业环境科学, 2005, 2424(6):1145-1151.
    [39]Howa-h R W, Mariano R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:evolving views over three decades[J]. Oceanography, 2006, 5151(1part2):364-376.
    [40]周启星,俞洁,陈剑,等.某城市湖泊中磷的循环特征及富营养华发生潜势[J].环境科学, 2004, 2525(5):138-142.
    [41]卢少勇,金相灿,郭建宁,等.沉积物—水系统中氮磷变化与上覆水对藻类生长的影响[J].环境科学, 2007, 2828(10):2169-2173.
    [42]张路,范成新,池俏俏,等.太湖及其主要入湖河流沉积磷形态分布研究[J].地球化学, 2004, 3333(4):423-432.
    [43]张胜花,常军军,孙珮石.水体藻类磷代谢及藻体磷矿化研究进展[J].生态环境学报, 2013, 2222(7):1250-1254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700