喀斯特高原黄壤区退化植物群落常见植物叶片氮同位素组成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen Isotope Ratios in Leaves from Degraded Plant Communities in A Yellow Soil Region of the Karst Plateau
  • 作者:罗绪强 ; 张桂玲 ; 王世杰 ; 阮英慧 ; 刘兴 ; 李勇
  • 英文作者:LUO Xuqiang;ZHANG Guiling;WANG Shijie;RUAN Yinghui;LIU Xin;LI Yong;School of Geography and Resources,Guizhou Education University;Karst Ecosystem Observation Research Station in Puding,Chinese Academy of Sciences;College of Chemistry and Materials Engineering,Guiyang University;
  • 关键词:稳定性氮同位素 ; 喀斯特高原 ; 黄壤 ; 退化植物群落 ; 生境异质性 ; 元素化学计量比
  • 英文关键词:stable nitrogen isotope ratio;;karst plateau;;yellow soil;;degraded plant community;;habitat heterogeneity;;element stoichiometry
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:贵州师范学院地理与资源学院;中国科学院普定喀斯特生态系统观测研究站;贵阳学院化学与材料工程学院;
  • 出版日期:2019-01-30 11:42
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.328
  • 基金:国家自然科学基金项目(41563007);; 贵州省优秀青年科技人才培养对象专项资金项目(黔科合人字[2015]21号);; 贵州省优秀科技教育人才省长资金项目(黔省专合字[2012]80号);; 贵州省高层次创新型人才资金项目(黔人领发[2015]3号)
  • 语种:中文;
  • 页:DZDQ201902001
  • 页数:8
  • CN:02
  • ISSN:52-1139/P
  • 分类号:4-11
摘要
氮是植物需求量最大的矿质营养元素。由于氮循环诸过程中的化学转化、物理运输等都有可能使其发生同位素分馏,植物稳定氮同位素组成是土壤-植物-大气连续体综合作用的整体响应,能较好的反映流域内与植物生理生态过程相联系的一系列环境信息,具有示踪、整合和指示等多项功能。为探讨喀斯特环境下黄壤区植物稳定氮同位素组成变异的影响因素及其相关关系,以喀斯特高原贵州省清镇市王家寨峰丛洼地小流域为例,选取流域内黄壤区退化植物群落3种植被类型中的4种常见植物为研究对象,分别对其叶片C、N、P、K、Ca、Mg元素含量和稳定氮同位素进行了测定分析。结果表明:(1)研究区植物叶片δ~(15)N值的变化范围为-3. 25‰~0. 69‰,平均值为-1. 04‰,变异程度较高,离散程度较大,呈负偏态分布。(2)植物叶片δ~(15)N值在群落间和坡位间的差异均不显著(P>0. 05);(3)植物叶片δ~(15)N值的种间变化趋势为小果蔷薇(-0. 03‰)>火棘(-0. 24‰)>过路黄(-1. 58‰)>粉枝莓(-2. 29‰),差异显著(P<0. 05)。(4)研究区植物叶片δ~(15)N值受群落类型和物种因素的交互影响显著(P=0. 016,R2=0. 870)。(5)研究区植物叶片δ~(15)N值受叶片K营养含量的影响较大,同时与C、N、P、K、Ca元素化学计量比之间的关系密切,叶片K、Ca营养含量间的调控是影响黄壤区植物叶片δ~(15)N值的主要因素。
        Nitrogen is one of the most demanded mineral nutrients of plant. The isotopic fractionation of nitrogen happens in nitrogen cycling processes,e.g. chemical transformation and physical transport process. The stable nitrogen isotope ratio of plant is an integrating index of continuum interactions of soil-plant-atmosphere,and reflect a series of environmental information associated with physiological ecological processes of plant. In this study,in order to investigate affecting factors of the variation of nitrogen isotope compositions in plants in yellow soil regions of karst area and their relationship,we conducted researches in the Wangjia village,a small watershed of the karst plateau in Qingzhen,Guizhou. The leaf samples of four common plant species were collected in degraded plant communities with three different vegetation types and their contents of C,N,P,K,Ca and Mg as well as nitrogen stable isotope ratios were analyzed. The results showed that:( 1) The δ15 N values of leaves ranged from-3. 25‰ to 0. 69‰( with an average of-1. 04‰),with a distribution of high variation,large dispersion and negatively-skewed.( 2) No significant difference( P>0. 05) in δ15 N values of plant leaves was found among different plant communities or/and different slope positions.( 3) A trend of δ15 N value was found among interspecies as Rosa cymosa(-0. 03‰) > Pyracantha fortuneana(-0. 24‰) > Lysimachia christinae(-1. 58‰) > Rubus biflorus(-2. 29‰),and the difference of their δ15 N values was significant( P < 0. 05).( 4) The δ15 N values of plant leaves in the study area were significantly affected by the interaction of community types and species factors( P = 0. 016,R2= 0. 870).( 5) The δ15 N values of plant leaves in the study area were affected significantly by contents of K in leaves,and the stoichiometric ratios of C,N,P,K and Ca related closely. The regulation of K and Ca contents might be the key factor affecting the δ15 N value of plant leaf in the yellow soil area.
引文
[1] Rennenberg H,Dannenmann M,Gessler A,et al. Nitrogen balance in forest soils:nutritional limitation of plants under climate change stresses[J]. Plant Biology,2009,11(Suppl. 1):4-23.
    [2] Clark C M,Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature,2008,451(7179):712
    [3] Dijkstra F A,He M,Johansen M P,et al. Plant and microbial uptake of nitrogen and phosphorus affected by drought using15N and32P tracers[J]. Soil Biology and Biochemistry,2015,82:135-142.
    [4]罗绪强,王世杰,刘秀明.陆地生态系统植物的氮源及氮素吸收[J].生态学杂志,2007,26(7):1094-1100.
    [5] H9gberg P,H9gberg M N,Quist M E,et al. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris[J]. The New Phytologist,1999,142(3):569-576.
    [6] Evans R D. Physiological mechanisms influencing plant nitrogen isotope composition[J]. Trends in Plant Science,2001,6(3):121-126.
    [7] H9gberg P.15N natural abundance in soil–plant systems[J]. The New Phytologist,1997,137(2):179-203.
    [8]周咏春,程希雷,樊江文.植物氮同位素组成与其影响因子的关系研究进展[J].草地学报,2012,20(6):981-989.
    [9]刘晓宏,赵良菊,高登义,等.东非大裂谷埃塞俄比亚段内C3植物叶片δ13C和δ15N及其环境指示意义[J].科学通报,2007,52(2):199-206.
    [10] Templer P H,Arthur M A,Lovett G M,et al. Plant and soil natural abundanceδ15N:Indicators of relative rates of nitrogen cycling in temperate forest ecosystems[J]. Oecologia,2007,153(2):399-406.
    [11] Robinson D.δ15N as an integrator of the nitrogen cycle[J]. Trends in Ecology&Evolution,2001,16(3):153-162.
    [12] Gatica M G,Aranibar J N,Pucheta E. Environmental and species-specific controls onδ13C andδ15N in dominant woody plants from centralwestern Argentinian drylands[J]. Austral Ecology,2017,42(5):533-543.
    [13] Chen L,Flynn D F B,Zhang X,et al. Divergent patterns of foliarδ13C andδ15N in Quercus aquifolioides with an altitudinal transect on the Tibetan Plateau:an integrated study based on multiple key leaf functional traits[J]. Journal of Plant Ecology,2014,8(3):303-312.
    [14]刘贤赵,张勇,宿庆,等.陆生植物氮同位素组成与气候环境变化研究进展[J].地球科学进展,2014,29(2):216-226.
    [15]樊金娟,宁静,孟宪菁,等. C3植物叶片稳定碳同位素对温度、湿度的响应及其在水分利用中的研究进展[J].土壤通报,2012,43(6):1502-1507.
    [16]殷树鹏,张成君,郭方琴,等.植物碳同位素组成的环境影响因素及在水分利用效率中的应用[J].同位素,2008,21(1):46-53.
    [17]陈伟霖,缪绅裕,陶文琴,等.珠海淇澳与广州南沙湿地3种植物稳定碳氮同位素组成比较[J].海洋环境科学,2018,37(1):38-42.
    [18] van der Sleen P,Zuidema P A,Pons T L. Stable isotopes in tropical tree rings:theory,methods and applications[J]. Functional Ecology,2017,31(9):1674-1689.
    [19] Voronin P Y,Mukhin V A,Velivetskaya T A,et al. Isotope composition of carbon and nitrogen in tissues and organs of Betula pendula[J]. Russian Journal of Plant Physiology,2017,64(2):184-189.
    [20]刘艳杰,许宁,牛海山.内蒙古草原常见植物叶片δ13C和δ15N对环境因子的响应[J].生态学报,2016,36(1):235-243.
    [21]孙建飞,戴崴巍,贺同鑫,等.蒙古栎叶片及其土壤碳、氮同位素自然丰度对大气CO2浓度升高的响应[J].应用生态学报,2017,28(7):2179-2185.
    [22]张金美,张萌,匡武名,等.水华条件下鄱阳湖区植物叶片碳氮同位素特性[J].环境科学研究,2016,29(5):708-715.
    [23] Werth M,Mehltreter K,Briones O,et al. Stable carbon and nitrogen isotope compositions change with leaf age in two mangrove ferns[J]. FloraMorphology,Distribution,Functional Ecology of Plants,2015,210:80-86.
    [24]林光辉.稳定同位素生态学[M].北京:高等教育出版社,2013:243-270.
    [25] Wang S J,Liu Q M,Zhang D F. Karst rocky desertification in southwestern China:geomorphology,landuse,impact and rehabilitation[J]. Land Degradation&Development,2004,15(2):115-121.
    [26]李阳兵,王世杰,容丽.关于喀斯特石漠和石漠化概念的讨论[J].中国沙漠,2004,24(6):689-695.
    [27]王世杰,李阳兵,李瑞玲.喀斯特石漠化的形成背景、演化与治理[J].第四纪研究,2003,23(6):657-666.
    [28]刘世全,张明.区域土壤地理[M].成都:四川大学出版社,1997:357.
    [29]刘丛强,郎赟超,李思亮,等.喀斯特生态系统生物地球化学过程与物质循环研究:重要性、现状与趋势[J].地学前缘,2009,16(6):1-12.
    [30]杜雪莲,王世杰,罗绪强.黔中喀斯特石漠化区不同土壤类型对常见植物叶片δ13C值的影响[J].环境科学,2014,35(9):3587-3594.
    [31]罗绪强,王世杰,王程媛,等.喀斯特石漠化过程中土壤氮同位素组成及其空间分异特征[J].核农学报,2011,25(6):1235-1243.
    [32]罗绪强,王世杰,张桂玲,等.喀斯特石漠化过程中地表凋落物δ15N特征[J].矿物岩石地球化学通报,2014,33(2):214-220.
    [33]罗绪强,王世杰,刘秀明.稳定氮同位素在环境污染示踪中的应用进展[J].矿物岩石地球化学通报,2007,26(3):295-299.
    [34]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学[J]. 1998,7(2):37-42.
    [35] Michelsen A,Schmidt I K,Jonasson S,et al. Leaf15N abundance of subarctic plants provides field evidence that ericoid,ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen[J]. Oecologia,1996,105(1):53-63.
    [36]段中华,乔有明,全小龙,等.黄河源区湿地、草地土壤理化性质和碳氮组成及其稳定同位素特征分析[J].水土保持学报,2015,29(4):247-252.
    [37]郜士垒,何宗明,黄志群,等.杉木宿存叶片的分解及稳定性碳氮同位素和化学组成[J].生态学杂志,2015,34(9):2457-2463.
    [38] Schimann H,Ponton S,Httenschwiler S,et al. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana:evidence from15N natural abundance and microbial activities[J]. Soil Biology and Biochemistry,2008,40(2):487-494.
    [39]全小龙,段中华,乔有明,等.不同高寒草甸土壤碳氮稳定同位素和密度的差异[J].草业学报,2016,25(12):27-34.
    [40]闵孝君,马剑英,巴贺贾依娜尔·铁木尔别克.水、盐胁迫下长穗柽柳和梭梭碳氮同位素组成的变化特征[J].干旱区研究,2017,34(5):1109-1116.
    [41]郑璐嘉,黄志群,何宗明,等.林龄、叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响[J].林业科学,2015,51(1):22-28.
    [42] Gubsch M,Roscher C,Gleixner G,et al. Foliar and soilδ15N values reveal increased nitrogen partitioning among species in diverse grassland communities[J]. Plant,Cell and Environment,2011,34(6):895-908.
    [43]杜雪莲,王世杰,罗绪强.黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征[J].长江流域资源与环境,2015,24(7):1168-1176.
    [44]刘方,王世杰,罗海波,等.喀斯特森林生态系统的小生境及其土壤异质性[J].土壤学报,2008,45(6):1055-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700