蓝藻的蛋白质翻译后修饰研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PROGRESS ON PROTEIN POST-TRANSLATIONAL MODIFICATION IN CYANOBACTERIA
  • 作者:杨明坤 ; 林小煌 ; 马炎炎 ; 王炎 ; 葛峰
  • 英文作者:YANG Ming-Kun;LIN Xiao-Huang;MA Yan-Yan;WANG Yan;GE Feng;Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:蓝藻 ; 蛋白质组学 ; 翻译后修饰
  • 英文关键词:Cyanobacteria;;Proteomics;;Post translational modifications(PTMs)
  • 中文刊名:SSWX
  • 英文刊名:Acta Hydrobiologica Sinica
  • 机构:中国科学院水生生物研究所藻类生物学重点实验室;中国科学院大学;
  • 出版日期:2016-09-05 16:07
  • 出版单位:水生生物学报
  • 年:2016
  • 期:v.40
  • 基金:国家自然科学基金(31570829)资助~~
  • 语种:中文;
  • 页:SSWX201605025
  • 页数:12
  • CN:05
  • ISSN:42-1230/Q
  • 分类号:182-193
摘要
蛋白质翻译后修饰系统几乎参与了细胞所有的正常生命活动过程,并发挥着重要的调控作用。目前,基于生物质谱技术进行蛋白质翻译后修饰的规模化分析鉴定,已经成为蛋白质组学研究的核心内容之一。近年来的研究表明,蓝藻细胞中存在着复杂的蛋白质翻译后修饰系统,如磷酸化,乙酰化,甲基化,糖基化,氧化等,这些翻译后修饰在蓝藻细胞的代谢过程中可能发挥着重要的调控作用。本文主要针对蓝藻细胞中蛋白质翻译后修饰的发现与鉴定,以及翻译后修饰潜在的生物学功能展开简要综述。
        Post-translational modifications(PTMs) are vital cellular control mechanisms modulating diverse protein properties. Proteomic analysis of post-translational modifications based on the mass spectrometry has been the key research area. Recently, it has been shown that protein post-translational modifications, such as phosphorylation, acetylation, methylation, glycosylation and oxidation, play crucial regulatory role in various pathways of cyanobacteria. In the present article, we reviewed the recent progress on the functional studies of PTMs in cyanobacteria.
引文
[1]Bryant D A.The Molecular Biology of Cyanobacteria[M].Kluwer Academic Publishers Dordrecht.1994,139-216
    [2]Mann M,Jensen O N.Proteomic analysis of post-translational modifications[J].Nature Biotechnology,2003,21:255-261
    [3]Hart G W,Ball L E.Post-translational modifications:a major focus for the future of proteomics[J].Molecular&Cellular Proteomics,2013,12:3443-3443
    [4]Doyle H A,Mamula M J.Post-translational protein modifications in antigen recognition and autoimmunity[J].Trends in Immunology,2001,22(8):443-449
    [5]Khoury G A,Baliban R C,Floudas C A.Proteome-wide post-translational modification statistics:frequency analysis and curation of the swiss-prot database[J].Scientific Reports,2011,1:90
    [6]Witze E S,Old W M,Resing K A,et al.Mapping protein post-translational modifications with mass spectrometry[J].Nature Methods,2007,4(10):798-806
    [7]Welker M,von Dohren H.Cyanobacterial peptidesnature’s own combinatorial biosynthesis[J].Fems Microbiology Reviews,2006,30(4):530-563
    [8]Zhang C C,Jang J,Sakr S,et al.Protein phosphorylation on Ser,Thr and Tyr residues in cyanobacteria[J].Journal of Molecular Microbiology and Biotechnology,2005,9(3-4):154-166
    [9]Zhang C C,Gonzalez L,Phalip V.Survey,analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome[J].Nucleic Acids Research,1998,26(16):3619-3625
    [10]Ludwig M,Bryant D A.Transcription profiling of the model cyanobacterium Synechococcus sp strain PCC7002 by Next-Gen(SOLi D(TM))sequencing of c DNA[J].Frontiers in Microbiology,2011,2
    [11]Kaneko T,Sato S,Kotani H,et al.Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp.strain PCC6803.Ⅱ.Sequence determination of the entire genome and assignment of potential protein-coding regions[J].DNA Research,1996,3:109-136
    [12]Ohmori M,Ikeuchi M,Sato N,et al.Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing Cyanobacterium anabaena sp strain PCC 7120[J].DNA Research,2001,8:271-284
    [13]Liu Z X,Li H C,Wei Y P,et al.Signal transduction pathways in Synechocystis sp.PCC 6803 and biotechnological implications under abiotic stress[J].Critical Reviews in Biotechnology,2013,35(2):1-12
    [14]Schuster G,Owens G C,Cohen Y,et al.Thylakoid polypeptide composition and light-independent phosphorylation of the chlorophyll-a,B-protein in Prochloron,a Prokaryote exhibiting oxygenic photosynthesis[J].Biochimica Et Biophysica Acta,1984,767:596-605
    [15]Allen J F,Sanders C E,Holmes N G.Correlation of membrane-protein phosphorylation with excitation energy distribution in the Cyanobacterium synechococcus-6301[J].Febs Letters,1985,193:271-275
    [16]Mann N H,Rippka R,Herdman M.Regulation of protein-phosphorylation in the cyanobacterium Anabaena strain Pcc-7120[J].Journal of General Microbiology,1991,137:331-339
    [17]Bloye S A,Silman N J,Mann N H,et al.Bicarbonate concentration by Synechocystis Pcc6803-modulation of protein-phosphorylation and inorganic carbon transport by glucose[J].Plant Physiology,1992,99:601-606
    [18]Hagemann M,Golldack D,Biggins J,et al.Salt-dependent protein-phosphorylation in the cyanobacterium Synechocystis PCC-6803[J].Fems Microbiology Letters,1993,113:205-210
    [19]Forchhammer K,Demarsac N T.The P-Ii protein in the cyanobacterium Synechococcus sp strain Pcc-7942 is modified by serine phosphorylation and signals the cellular N-status[J].Journal of Bacteriology,1994,176:84-91
    [20]Mann N H.Protein-phosphorylation in cyanobacteria[J].Microbiology-Uk,1994,140:3207-3215
    [21]Piven I,Ajlani G,Sokolenko A.Phycobilisome linker proteins are phosphorylated in Synechocystis sp.PCC6803[J].Journal of Biological Chemistry,2005,280:21667-21672
    [22]Nakajima M,Imai K,Ito H,et al.Reconstitution of circadian oscillation of cyanobacterial Kai C phosphorylation in vitro[J].Science,2005,308:414-415
    [23]Yang M K,Qiao Z X,Zhang W Y,et al.Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp.strain PCC 7002[J].Journal of Proteome Research,2013,12:1909-1923
    [24]Mikkat S,Fulda S,Hagemann M.A 2D gel electrophoresis-based snapshot of the phosphoproteome in the cyanobacterium Synechocystis sp.strain PCC 6803[J].Microbiology,2014,160:296-306
    [25]Spat P,Macek B,Forchhammer K.Phosphoproteome of the cyanobacterium Synechocystis sp PCC 6803 and its dynamics during nitrogen starvation[J].Frontiers in Microbiology,2015,6
    [26]Lee D G,Kwon J,Eom C Y,et al.Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides[J].Journal of Microbiology,2015,53:279-287
    [27]Zhuo C,Jiao Z,Ying C,et al.Effects of phosphorylation ofβsubunits of phycocyanins on state transition in the model cyanobacterium Synechocystis sp.PCC 6803[J].Plant and Cell Physiology,2015,56:1997-2013
    [28]Wang Q,Zhang Y,Yang C,et al.Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J].Science,2010,327:1004-1007
    [29]Choudhary C,Kumar C,Gnad F,et al.Lysine acetylation targets protein complexes and co-regulates major cellular functions[J].Science,2009,325:834-840
    [30]Lundby A,Lage K,Weinert B T,et al.Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns[J].Cell Reports,2012,2:419-431
    [31]Kouzarides T.Acetylation:a regulatory modification to rival phosphorylation[J]?EMBO Journal,2000,19:1176-1179
    [32]Yang X J.Lysine acetylation and the bromodomain:a new partnership for signaling[J].Bioessays,2004,26:1076-1087
    [33]Allfrey V,Faulkner R,Mirsky A.Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J].Proceedings of the National Academy of Sciences of the United States of America,1964,51:786
    [34]Choudhary C,Weinert B T,Nishida Y,et al.The growing landscape of lysine acetylation links metabolism and cell signalling[J].Nature Reviews Molecular Cell Biology,2014,15:536-550
    [35]Guan K L,Xiong Y.Regulation of intermediary metabolism by protein acetylation[J].Trends in Biochemical Sciences,2011,36:108-116
    [36]Zhang J,Sprung R,Pei J,et al.Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli[J].Molecular&Cellular Proteomics,2009,8:215-225
    [37]Zhang K,Zheng S,Yang J S,et al.Comprehensive profiling of protein lysine acetylation in Escherichia coli[J].Journal of Proteome Research,2013,12:844-851
    [38]Kim D,Yu B J,Kim J A,et al.The acetylproteome of Gram-positive model bacterium Bacillus subtilis[J].Proteomics,2013,13:1726-1736
    [39]Wang Q J,Zhang Y K,Yang C,et al.Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J].Science,2010,327:1004-1007
    [40]Lee D W,Kim D,Lee Y J,et al.Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus[J].Proteomics,2013,13:2278-2282
    [41]Liu F,Yang M,Wang X,et al.Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis[J].Molecular&Cellular Proteomics,2014,13:3352-3366
    [42]Baniulis D,Yamashita E,Whitelegge J P,et al.Structure-function,stability,and chemical modification of the cyanobacterial cytochrome b(6)f complex from Nostoc sp PCC 7120[J].Journal of Biological Chemistry,2009,284:9861-9869
    [43]Guskov A,Kern J,Gabdulkhakov A,et al.Cyanobacterial photosystemⅡat 2.9-?resolution and the role of quinones,lipids,channels and chloride[J].Nature Structural&Molecular Biology,2009,16:334-342
    [44]Philmus B,Christiansen G,Yoshida W Y,et al.Posttranslational modification in microviridin biosynthesis[J].Chembiochem,2008,9:3066-3073
    [45]Shalev-Malul G,Lieman-Hurwitz J,Viner-Mozzini Y,et al.An Abr B-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum[J].Environmental Microbiology,2008,10:988-999
    [46]Fewer D P,Wahlsten M,Osterholm J,et al.The Genetic basis for O-acetylation of the microcystin toxin in Cyanobacteria[J].Chemistry&Biology,2013,20:861-869
    [47]Mo R,Yang M,Chen Z,et al.Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp.PCC 6803[J].Journal of Proteome Research,2015,14:1275-1286
    [48]Carrozza M J,Utley R T,Workman J L,et al.The diverse functions of histone acetyltransferase complexes[J].Trends in Genetics,2003,19:321-329
    [49]Doi M,Hirayama J,Sassone-Corsi P.Circadian regulator CLOCK is a histone acetyltransferase[J].Cell,2006,125:497-508
    [50]Rardin M J,Newman J C,Held J M,et al.Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:6601-6606
    [51]Hallows W C,Lee S,Denu J M.Sirtuins deacetylate and activate mammalian acetyl-Co A synthetases[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103:10230-10235
    [52]Starai V J,Escalante-Semerena J C.Identification of the protein acetyltransferase(Pat)enzyme that acetylates acetyl-Co A synthetase in Salmonella enterica[J].Journal of Molecular Biology,2004,340:1005-1012
    [53]Tsang A W,Escalante-Semerena J C.Cob B,a new member of the SIR2 family of eucaryotic regulatory proteins,is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cob T mutants during cobalamin biosynthesis in Salmonella typhimurium LT2[J].Journal of Biological Chemistry,1998,273:31788-31794
    [54]Starai V J,Celic I,Cole R N,et al.Sir2-dependent activation of acetyl-Co A synthetase by deacetylation of active lysine[J].Science,2002,298:2390-2392
    [55]Li R,Gu J,Chen Y Y,et al.Cob B regulates Escherichia coli chemotaxis by deacetylating the response regulator Che Y[J].Molecular Microbiology,2010,76:1162-1174
    [56]Xu H,Hegde S S,Blanchard J S.Reversible acetylation and inactivation of Mycobacterium tuberculosis AcetylCo A synthetase is dependent on c AMP[J].Biochemistry,2011,50:5883-5892
    [57]Crosby H A,Rank K C,Rayment I,et al.Structural insights into the substrate specificity of the Rhodopseudomonas palustris protein Acetyltransferase Rp Pat identification of a loop critical for recognition by Rp Pat[J].Journal of Biological Chemistry,2012,287:41392-41404
    [58]Foyer C H,Noctor G.Ascorbate and glutathione:the heart of the redox hub[J].Plant Physiology,2011,155:2-18
    [59]Dalle-Donne I,Rossi R,Colombo G,et al.Protein S-glutathionylation:a regulatory device from bacteria to humans[J].Trends in Biochemical Sciences,2009,34:85-96
    [60]Zaffagnini M,Bedhomme M,Marchand C H,et al.Redox regulation in photosynthetic organisms:focus on glutathionylation[J].Antioxidants&Redox Signaling,2012,16:567-586
    [61]Grek C L,Zhang J,Manevich Y,et al.Causes and consequences of cysteine S-Glutathionylation[J].Journal of Biological Chemistry,2013,288:26497-26504
    [62]Marteyn B,Sakr S,Farci S,et al.The Synechocystis PCC6803 Mer A-Like enzyme operates in the reduction of both mercury and uranium under the control of the Glutaredoxin 1 enzyme[J].Journal of Bacteriology,2013,195:4138-4145
    [63]Sakr S,Dutheil J,Saenkham P,et al.The activity of the Synechocystis PCC6803 Abr B2 regulator of hydrogen production can be post-translationally controlled through glutathionylation[J].International Journal of Hydrogen Energy,2013,38:13547-13555
    [64]Chardonnet S,Sakr S,Cassier-Chauvat C,et al.First proteomic study of S-Glutathionylation in cyanobacteria[J].Journal of Proteome Research,2015,14:59-71
    [65]Guo J,Nguyen A Y,Dai Z Y,et al.Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics[J].Molecular&Cellular Proteomics,2014,13:3270-3285
    [66]Mescher M F,Strominger J L.Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium[J].Journal of Biological Chemistry,1976,251:2005-2014
    [67]Aas F E,Vik A,Vedde J,et al.Neisseria gonorrhoeae O-linked pilin glycosylation:functional analyses define both the biosynthetic pathway and glycan structure[J].Molecular Microbiology,2007,65:607-624
    [68]Linton D,Dorrell N,Hitchen P G,et al.Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway[J].Molecular Microbiology,2005,55:1695-1703
    [69]Voisin S,Kus J V,Houliston S,et al.Glycosylation of Pseudomonas aeruginosa strain Pa5196 type IV pilins with mycobacterium-like alpha-1,5-linked D-araf oligosaccharides[J].Journal of Bacteriology,2007,189:151-159
    [70]Smedley J G,Jewell E,Roguskie J,et al.Influence of pilin glycosylation on Pseudomonas aeruginosa 1244pilus function[J].Infection and Immunity,2005,73:7922-7931
    [71]Banerjee A,Ghosh S K.The role of pilin glycan in neisserial pathogenesis[J].Molecular and Cellular Biochemistry,2003,253:179-190
    [72]Kim Y H,Park Y M,Kim S J,et al.The role of Slr1443in pilus biogenesis in Synechocystis sp PCC 6803:involvement in post-translational modification of pilins[J].Biochemical and Biophysical Research Communications,2004,315:179-186
    [73]Kim Y H,Kim J Y,Kim S Y,et al.Alteration in the glycan pattern of pilin in a nonmotile mutant of Synechocystis sp PCC 6803[J].Proteomics,2009,9:1075-1086
    [74]Kim Y H,Park K H,Kim S Y,et al.Identification of trimethylation at C-terminal lysine of pilin in the cyanobacterium Synechocystis PCC 6803[J].Biochemical and Biophysical Research Communications,2011,404:587-592
    [75]Klotz A V,Glazer A N.Gamma-N-Methylasparagine in phycobiliproteins-occurrence,location,and biosynthesis[J].Journal of Biological Chemistry,1987,262:17350-17355
    [76]Swanson R V,Glazer A N.Phycobiliprotein methylation-effect of the Gamma-N-Methylasparagine residue on energy-transfer in phycocyanin and the phycobilisome[J].Journal of Molecular Biology,1990,214:787-796
    [77]Behshad E,Parkin S E,Bollinger J M.Mechanism of cysteine desulfurase Slr0387 from Synechocystis sp PCC6803:Kinetic analysis of cleavage of the persulfide intermediate by chemical reductants[J].Biochemistry,2004,43:12220-12226
    [78]Campanini B,Schiaretti F,Abbruzzetti S,et al.Sulfur mobilization in cyanobacteria:The catalytic mecahnism of L-cystine C-S lyase(C-DES)from synechocystis[J].Journal of Biological Chemistry,2006,281:38769-38780
    [79]Silman N J,Carr N G,Mann N H.Adp-ribosylation of glutamine-synthetase in the cyanobacterium Synechocystis sp strain Pcc-6803[J].Journal of Bacteriology,1995,177:3527-3533
    [80]Fagerlund R D,Eaton-Rye J J.The lipoproteins of cyanobacterial photosystemⅡ[J].Journal of Photochemistry and Photobiology B-Biology,2011,104:191-203
    [81]Mc Intosh J A,Donia M S,Nair S K,et al.Enzymatic basis of ribosomal peptide prenylation in cyanobacteria[J].Journal of the American Chemical Society,2011,133:13698-13705
    [82]Gallon J R,Cheng J J,Dougherty L J,et al.A novel covalent modification of nitrogenase in a cyanobacterium[J].FEBS Letters,2000,468:231-233
    [83]Church G M.Proteogenomic mapping as a complementary method to perform genome annotation[J].Proteomics,2004,4:59-77
    [84]Kim M S,Pinto S M,Getnet D,et al.A draft map of the human proteome[J].Nature,2014,509:575-581
    [85]Zhang B,Wang J,Wang X,et al.Proteogenomic characterization of human colon and rectal cancer[J].Nature,2014,513:382-387
    [86]Yang M K,Yang Y H,Chen Z,et al.Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111:E5633-5642
    [87]Ong S E,Mittler G,Mann M.Identifying and quantifying in vivo methylation sites by heavy methyl SILAC[J].Nature Methods,2004,1:119-126
    [88]Molden R C,Goya J,Khan Z,et al.Stable Isotope Labeling of Phosphoproteins for Large-scale Phosphorylation Rate Determination[J].Molecular&Cellular Proteomics,2014,13:1106-1118
    [89]Chen Y,Colak G,Zhao Y.SILAC-Based Quantification of Sirt1-Responsive Lysine Acetylome[M].Sirtuins.Humana Press,2013:105-120
    [90]Engelsberger W R,Erban A,Kopka J,et al.Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites[J].Plant methods,2006,2:14
    [91]Huttlin E L,Hegeman A D,Harms A C,et al.Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana[J].Molecular&Cellular Proteomics,2007,6:860-881
    [92]Pandhal J,Ow S Y,Wright P C,et al.Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabo-lic labeling and in vitro isobaric labeling[J].Journal of Proteome Research,2009,8:818-828
    [93]Aryal U K,Stockel J,Welsh E A,et al.Dynamic proteome analysis of Cyanothece sp ATCC 51142 under constant light[J].Journal of Proteome Research,2012,11:609-619
    [94]Aryal U K,Stockel J,Krovvidi R K,et al.Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles[J].Bmc Systems Biology,2011,5:194
    [95]Wang F J,Cheng K,Wei X L,et al.A six-plex proteome quantification strategy reveals the dynamics of protein turnover[J].Scientific Reports,2013,3
    [96]Thompson A,Schafer J,Kuhn K,et al.Tandem mass tags:A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS[J].Analytical Chemistry,2003,75:1895-1904
    [97]Ross P L,Huang Y L N,Marchese J N,et al.Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J].Molecular&Cellular Proteomics,2004,3:1154-1169
    [98]Soderblom E J,Philipp M,Thompson J W,et al.Quantitative Label-free phosphoproteomics strategy for multifaceted experimental designs[J].Analytical Chemistry,2011,83:3758-3764
    [99]Sidoli S,Lin S,Xiong L,et al.SWATH analysis for characterization and quantification of histone post-translational modifications[J].Molecular&Cellular Proteomics,2015,mcp.O114.046102
    [100]Doll S,Burlingame A L.Mass spectrometry-based detection and assignment of protein posttranslational modifications[J].Acs Chemical Biology,2015,10:63-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700