用户名: 密码: 验证码:
刺参粗多糖对糖酵解与有氧氧化过程关键酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Stichopus japonicus Crude Polysaccharides on the Key Enzymes in Glycolysis and Aerobic Oxidation
  • 作者:张红玲 ; 韦豪华 ; 李兴太
  • 英文作者:ZHANG Hong-ling;WEI Hao-hua;LI Xing-tai;College of Life Science,Dalian Minzu University;
  • 关键词:刺参粗多糖 ; 糖酵解 ; 有氧氧化 ; 癌症预防
  • 英文关键词:Stichopus japonicus crude polysaccharides;;glycolysis;;aerobic oxidation;;cancer prevention
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:大连民族大学生命科学学院;
  • 出版日期:2018-10-25 14:40
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.422
  • 基金:辽宁省自然科学基金项目(201602192)
  • 语种:中文;
  • 页:SPKJ201906049
  • 页数:5
  • CN:06
  • ISSN:11-1759/TS
  • 分类号:295-299
摘要
目的:研究刺参粗多糖(Stichopus japonicus crude polysaccharides,SJP)对糖酵解与氧化磷酸化关键酶的作用。方法:采用酶解法(木瓜蛋白酶、胃蛋白酶与胰蛋白酶)提取SJP。实验小鼠分为正常对照组、SJP 1组(木瓜蛋白酶水解法制备的SJP)、SJP 2组(胃蛋白酶与胰蛋白酶水解法制备的SJP),每组8只小鼠,灌胃剂量为200 mg/kg/d,每日上午九点灌胃,每日1次,给药10 d,正常对照组小鼠每天灌胃等体积生理盐水。测定刺参粗多糖对糖酵解过程关键酶己糖激酶(HK)、3-磷酸甘油醛脱氢酶(GAPDH)、乳酸脱氢酶(LDH)与有氧氧化过程关键酶丙酮酸脱氢酶(PDH)、线粒体复合体Ⅰ、线粒体复合体Ⅴ的影响。结果:与对照组相比,SJP组小鼠的HK、GAPDH及LDH活性均下降,且存在显著性差异(p <0.05); SJP组小鼠的PDH、线粒体复合体Ⅰ及复合体Ⅴ活性均升高,并存在显著性差异(p <0.05),即SJP可抑制HK、GAPDH及LDH的活性,促进PDH、线粒体复合体Ⅰ及线粒体复合体Ⅴ的活性。结论:SJP可抑制糖酵解促进有氧氧化过程,而癌细胞的主要特征是通过糖酵解产生能量,进而推测SJP具有预防癌症的作用。
        Objective: To study the effects on key enzymes glycolysis and oxidative phosphory-lation of Stichopus japonicus crude polysaccharides (SJP). Methods: SJP were extracted by enzymatic hydrolysis (papain,pepsin and trypsin),the experimental mice were divided into normal control group,SJP 1 group (papain hydrolysis method prepared by SJP),SJP 2 group (pepsin and trypsin hydrolysis method prepared by SJP),8 mice per group. The gastric dose was 200 mg/kg/d for 10 days,administered daily at 9: 00 am,and the normal control mice were given an equal volume of normal saline.The effects of SJP on the glycolytic key enzymes (hexokinase,3-glyceraldehyde phosphate dehydrogenase,lactate dehydrogenase) and aerobic oxidation key enzymes (pyruvate dehydrog-enase,mitochondrial complexⅠ,mitochondrial complex Ⅴ) were determined. Results: Compared with the control group,the activities of HK,GAPDH and LDH in the SJP group were decreased,and there was significant difference (p < 0.05),the activities of PDH,mitochondrial complex I and complex V in SJP were increased,and there was significant difference (p < 0.05),that was SJP could inhibit the activities of hexokinase,3-glyceraldehyde phosphate delydrogenase and lactate dehydrogenase,increased the activities of pyruvate dehydogenase,mitochondrial complex Ⅰ and mitochondrial complex Ⅴ.Conclusion: SJP could inhibit glycolysis and promote the aerobic oxidation.The main characteristic of cancer cells is that the energy is produced through glycolysis,and it is inferred that SJP has a role in preventing cancer.
引文
[1]唐婉容,马莹,喻洁,等.口腔鳞癌相关成纤维细胞糖代谢的初步研究[J].第三军医大学学报,2018,40(1):53-57.
    [2]Hanahan D,Weinberg R A.Hallmarks of cancer:The next generation[J].Cell,2011,144(5):646-674.
    [3]Warburg O.On the origin of cancer cells[J].Science,1956,123(3191):309-314.
    [4]Lee Z W,Teo X Y,Tay E Y,et al.Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and p H imbalance[J].British Journal of Pharmacology,2014,171(18):4322-4336.
    [5]Scatena R.Mitochondria and cancer:A growing role in apoptosis,cancer cell metabolism and dedifferentiation[J].Advances in Experimental Medicine and Biology,2012:287-308.
    [6]Cortassa S,O’rourke B,Winslow R L,et al.Control and regulation of integrated mitochondrial function in metabolic and transport networks[J].International Journal of Molecular Sciences,2009,10(4):1500-1513.
    [7]Li X B,Gu J D,Zhou Q H.Review of aerobic glycolysis and its key enzymes-new targets for lung cancer therapy[J].Thoracic Cancer,2015,6(1):17-24.
    [8]王润泽,李伟民,李建华,等.肿瘤能量代谢的研究进展[J].吉林医药学院学报,2017,38(3):223-226.
    [9]苏秀榕,娄永江,常亚青,等.海参的营养成分及海参多糖的抗肿瘤活性的研究[J].营养学报,2003,25(2):181-182.
    [10]韩秋菊,马宏飞.海参多糖的提取与纯化研究[J].安徽农业科学,2012,40(14):8071-8072,8074.
    [11]常耀光.海参岩藻聚糖硫酸酯及其酶解产物的制备、结构与活性研究[D].青岛:中国海洋大学,2010.
    [12]李天,刘一帆,周东梅,等.海参多糖通过调控PI3K/Akt信号通路诱导人肾癌786-0细胞凋亡[J].华中科技大学学报(医学版),2018,47(1):49-54.
    [13]刘红梅,周晓秋,姚亚楠,等.北极海参多糖的分离纯化及抗肿瘤活性研究[J].济南大学学报:自然科学版,2016,30(5):403-408.
    [14]Dubois M,Gilles K A,Hamiltion J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28(3):350-356.
    [15]李春艳,常亚青.海参的营养成分介绍[J].科学养鱼,2006,(2):71-72.
    [16]张红玲,韦豪华,李兴太.刺参多糖清除活性氧保护线粒体的研究[J/OL].现代食品科技,2018,34(5):1-7.
    [17]Xu R H,Pelicano H,Zhou Y,et al.Inhibition of glycolysis in cancer cells:A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J].Cancer Research,2005,65(2):613-621.
    [18]De R V,Iommelli F,Monti M,et al.Reversal of Warburg effect and reactivation of oxidative phosphorylation by differential inhibition of EGFR signaling pathways in non-small cell lung cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2015,21(22):5110-5120.
    [19]Wolf A,Agnihotri S,Micallef J,et al.Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J].Journal of Experimental Medicine,2011,208(2):313-326.
    [20]王秀,杨爱君,蔡凤梅,等.PTTG沉默通过下调糖酵解相关酶抑制卵巢癌细胞增殖[J].中国妇幼健康研究,2016,27(11):1343-1347.
    [21]刘姗姗,郑凌,黄昆.3-磷酸甘油醛脱氢酶通过调控磷酸甘油酸脱氢酶促进肝癌的形成[J].临床肝胆病杂志,2017,33(6):1151.
    [22]Shim H,Dolde C,Lewis B C,et al.c-Myc transactivation of LDH-A:Implications for tumor metabolism and growth[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(13):6658-6663.
    [23]Lu R,Jiang M,Chen Z,et al.Lactate dehydrogenase 5expression in norl-hodgkin lymphoma is associated with the induced hypoxia regulated protein and poor prognosis[J].Plos One,2013,8(9):e74853.
    [24]Papa S.Mitochondrial oxidative phosphorylation changes in the life span.Molecular aspects and physiopathological implications[J].Biochimica Et Biophysica Acta,1996,1276(2):87-105.
    [25]Jha M K,Suk K.Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas[J].Brain Tumor Res Treat,2013,1(2):57-63.
    [26]Hur H,Xuan Y,Kim Y B,et al.Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target[J].International Journal of Oncology,2013,42(1):44-54.
    [27]Zickermann V,Kerscher S,Zwicker K,et al.Architecture of complex I and its implications for electron transfer and proton pumping[J].Biochimica Et Biophysica Acta,2009,1787(6):574-583.
    [28]Brandt U,Kerscher S,Dr9se S,et al.Proton pumping by NADH:Ubiquinone oxidoreductase.A redox driven conformational change mechanism[J].Febs Letters,2003,545(1):9-17.
    [29]Wittig I,Schagger H.Structural organization of mitochondrial ATP synthase[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,2008,1777(7-8):592-598.
    [30]Pelicano H,Xu R,Du M,et al.Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism[J].Journal of Cell Biology,2006,175(6):913-923.
    [31]Sabater B,Marin D.The cancer Warburg effect may be a testable example of the minimum entropy production rate principle[J].Physical Biology,2017,14(2):024001.
    [32]CutruzzolàF,Giardina G,Marani M,et al.Glucose metabolism in the progression of prostate cancer[J].Frontiers in Physiology,2017,21(8):97-103.
    [33]Vaughan R A,Garcia-smith R,Dorsey J,et al.Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells[J].International Journal of Cancer,2013,133(10):2504-2510.
    [34]蒋晓月,江瑛.乳酸脱氢酶和Warburg效应的研究进展[J].生理科学进展,2017,48(5):352-356.
    [35]Soga T.Cancer metabolism:Key players in metabolic reprogramming[J].Cancer Science,2013,104(3):275-281.
    [36]Butler E B,Zhao Y,Mu1ozpinedo C,et al.Stalling the engine of resistance:Targeting cancer metabolism to overcome therapeutic resistance[J].Cancer Research,2013,73(9):2709-2717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700