旋耕埋草机螺旋横刀制造工艺误差及影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process errors in manufacturing helical blade for stubble burying rotary tiller and their influences on tillage
  • 作者:张居敏 ; 夏俊芳 ; 张甜 ; 张秀梅
  • 英文作者:ZHANG Ju-min;XIA Jun-fang;ZHANG Tian;ZHANG Xiu-mei;College of Engineering,Huazhong Agricultural University;
  • 关键词:旋耕埋草机 ; 螺旋横刀 ; 制造工艺 ; 误差分析
  • 英文关键词:stubble burying rotary tiller;;helical blade;;error analysis
  • 中文刊名:HNND
  • 英文刊名:Journal of Hunan Agricultural University(Natural Sciences)
  • 机构:华中农业大学工学院;
  • 出版日期:2014-01-26 19:42
  • 出版单位:湖南农业大学学报(自然科学版)
  • 年:2014
  • 期:v.40;No.220
  • 基金:国家自然科学基金项目(51275196);; 公益性行业(农业)科研专项(201203059)
  • 语种:中文;
  • 页:HNND201401019
  • 页数:7
  • CN:01
  • ISSN:43-1257/S
  • 分类号:92-98
摘要
分析1GMC–70型船式旋耕埋草机核心耕作部件螺旋横刀的制造工艺过程,研究制造工艺误差量及对整机耕作性能的影响。结果发现,由于采用近似加工方式,致使螺旋横刀的旋转轴线与刀辊轴线构成了空间异面直线,两者之间垂直距离为204.2 mm,空间夹角为28.7°;螺旋横刀刃口上各点的旋转半径、静态滑切角和静态切土角等参数波动区间分别为[189.0,200.0]、[14.7°,32.4°]和[70.3°,73.7°]。螺旋横刀端部静态滑切角最小(14.7°)时,属于砍切范畴,导致耕作过程中端部刃口缠草;螺旋横刀端部刃口旋转半径最大(200.0 mm)时,静态切土角最大(73.7°),这些因素影响整机单遍作业耕深。
        The manufacturing process of helical blades, the core tillage parts for boat-type 1GMC–70 stubble burying rotary tiller, was analyzed and the process errors and their influence on tillage performance were investigated. Results showed that the approximation process used resulted in space straight lines on different planes formed by rotating axis of the helical blade and the blade roller, between which the vertical distance is 204.2 mm and space angle 28.7°. The rotary radii of points on helical blade leading edge, the static sliding cutting angles of helical blade and the static cutting angles of helical blade are ranging from 189.0 mm to 200.0 mm, 14.7° to 32.4°, 70.3° to 73.7°, respectively. Static sliding cutting angle on the end of the helical blade is the smallest, which is 14.7° and belongs to cutting mode, resulting in stubble winding on the end of the blade during tillage. Rotary radius and static cutting angle on the end of helical blade are both the largest, which are 200.0 mm and 73.7° respectively. These factors influence the tillage depth of the tiller in a single performance.
引文
[1]张晓文,赵改宾,杨仁全,等.农作物秸秆在循环经济中的综合利用[J].农业工程学报,2006,22(增刊1):107–109.
    [2]姜洁,陈宏,赵秀兰.农作物秸秆改良土壤的方式与应用现状[J].中国农学通报,2008,24(8):420–423.
    [3]劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[J].农业工程学报,2002,18(2):49–52.
    [4]高利伟,马林,张卫峰,等.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009,25(7):173–109.
    [5]Pan Genxing,Zhou Ping,Li Zhipeng,et al.Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region,China[J].Agriculture,Ecosystems and Environment,2009,131:274–280.
    [6]张在平.旋耕埋草技术研究与试验[D].武汉:华中农业大学工学院,2005.
    [7]许绮川,夏俊芳,张国忠,等.船式旋耕埋草机:中国,CN2896816[P].2007–05–09.
    [8]夏俊芳,张国忠,许绮川,等.多熟制稻作区水田旋耕埋草机的结构与性能[J].华中农业大学学报,2008,27(2):331–334.
    [9]张国忠,许绮川,夏俊芳,等.1GMC–70型船式旋耕埋草机的设计[J].农业机械学报,2008,39(10):214–217.
    [10]姚兴林.基于虚拟仪器的螺旋型旋耕埋草刀辊转矩测试系统研究[D].武汉:华中农业大学工学院,2010.
    [11]张居敏,周勇,夏俊芳,等.旋耕埋草机横刀的数学建模与参数分析[J].农业工程学报,2013,29(1):18–25.
    [12]丁为民,彭嵩植.旋耕刀滑切角及滑切角方程的研究[J].农业工程学报,1995,11(4):67–72.
    [13]王福杰.IGLF–1.8型秸秆翻青机设计与研制[D].武汉:华中农业大学工学院,2011.
    [14]You Yong,Wang Decheng,Liu Jude.A device for mechanical remediation of degraded grasslands[J].Soil and Tillage Research,2012,118(1):1–10.
    [15]寻怀义.滑切理论探讨[J].农业机械学报,1979,10(4):107–111.
    [16]刘洋.玉米青贮机滚筒式切碎装置的设计与有限元分析[D].杨凌:西北农林科技大学,2008.
    [17]赵铁军,王金武.水稻秸秆整株还田埋草弯刀滑切角与安装角分析[J].农机化研究,2007(11):58–63.
    [18]Damora D,Pandey K P.Evaluation of performance of furrow openers of combined seed and fertilizer drills[J].Soil and Tillage Research,1995,34(1):127–139.
    [19]冯佐龙.4QZ–12型青饲料收获机关键部件的研究[D].保定:河北农业大学机电工程学院,2008.
    [20]中国农业机械化科学研究院.农业机械设计手册:上册[K].北京:中国农业科学技术出版社,2007:236–237.
    [21]丁为民,王耀华,彭嵩植.反转旋耕刀正切面分析及参数选择[J].农业机械学报,2004,35(4):40–43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700