基于SimVascular的腹主动脉复杂模型构建与血流动力学仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Simulation Study on Hemodynamics and Complex Structure Modal Construction of Abdominal Aorta Based on SimVascular
  • 作者:吴全玉 ; 潘玲佼 ; 于冬梅 ; 范振敏 ; 张文强 ; 陶为戈
  • 英文作者:WU Quan-yu;PAN Ling-jiao;YU Dong-mei;FAN Zhen-min;ZHANG Wen-qiang;TAO Wei-ge;School of Electrical and Information Engineering,Jiangsu University of Technology;School of Mechanical Engineering,Jiangsu University of Technology;
  • 关键词:腹腔主要动脉系 ; 血流动力学 ; 血流速度 ; 静态压力 ; 剪切力
  • 英文关键词:major celiac arteries;;velocity vector;;static pressure;;wall shear stress;;hemodynamics
  • 中文刊名:CZJF
  • 英文刊名:Journal of Jiangsu University of Technology
  • 机构:江苏理工学院电气信息工程学院;江苏理工学院机械工程学院;
  • 出版日期:2019-04-15
  • 出版单位:江苏理工学院学报
  • 年:2019
  • 期:v.25;No.131
  • 基金:常州市科技支撑计划(社会发展)项目“人体三层结构血管模型的中心动脉血压估计新方法研究”(CE20165021);; 江苏省高校自然科学研究面上项目“视网膜OCT图像三维配准关键技术的研究”(17KJB510015)
  • 语种:中文;
  • 页:CZJF201902002
  • 页数:9
  • CN:02
  • ISSN:32-1847/N
  • 分类号:7-15
摘要
研究在不同入口血流速度下,仿真计算逼近人体腹主动脉和髂动脉及其分支形状的血流动力学参数的变化情况。依据获取的CT血管数据,采用开源SimVascular软件构建腹主动脉以及附近主要动脉的血管模型,具体包括腹主动脉干、腹腔动脉、脾动脉及其分支肝动脉,肠系膜上下动脉及其分支,左右髂动脉及其分支和左右肾动脉。通过Fluent进行仿真计算,主要分析人体血管各处的血流速度矢量、静态压力和剪切力的血流动力学表现。在入口处施加不同的速度载荷条件,分别定义收缩期的类抛物线函数速度和平均定值速度,发现在这两种条件下,血管在分叉和小直径血管处,都出现较大速度和剪切力。但是在肠系膜上动脉和左右髂动脉的远端出现明显的不同。同时还发现入口速度的逐渐增加,会加倍血管各分叉处的血流速度。总之,成功构建复杂血管网络并进行仿真计算,将有助于医生更深入理解动脉血流力学特征。
        This paper studies the simulation calculation for the variation of hemodynamics parameters in human abdominal aorta and iliac artery under different blood flow velocities at the entries. And it adopts open source software SimVascular to construct the vessel models of abdominal aorta and some major arteries nearby including celiac axis, celiac artery, splenic artery and its hepatic artery branches, superior and inferior mesenteric arteries,left and right renal arteries and iliac arteries according to the CT vessel data. Besides, this paper mainly analyzes the blood velocity vector, static pressure, and wall shear stress by using the Fluent simulation calculation. Finally, the quasi-parabolic-like function velocity and the average constant velocity were assigned at the entry respectively, and it was found that in both conditions, the arterial models appeared larger velocities and wall shear stresses at the bifurcation and small-diameter vessels. However, there were significant differences between the superior mesenteric artery and the distal end of the left and right iliac arteries. At the same time, it was also found that the gradual increase in the entry speed would double the speed of the bifurcation artery. In conclusion, the successful construction of complex arterial networks and the results of simulation will help doctors better understand the characteristics of arterial blood flow.
引文
[1]张丹,李彩英,高不郎,等.颅内动脉瘤血流动力学发病机制研究进展[J].介入放射学杂志,2017,26(4):378-382.
    [2]ASSEMAT P,ARMITAGE J A,SIU K,et al.Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques[J].Science Direct,2014,38:4175-4185.
    [3]陈宇,李睿,赵雪梅,等.基于医学影像的血流动力学分析[J].力学发展,2016,46:323-342.
    [4]郑河荣,刘家好,何玲娜.脑血管计算机模型的建立与有限元分析[J].浙江工业大学学报,2014,42(3):253-256.
    [5]SAHO T,ONISHI H.Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics[J].Radiological physics and technology,2015,8(2):258-265.
    [6]陈珍,袁奇,朱光宇,等.颈内动脉狭窄时Willis环的血液动力学数值模拟[J].西安交通大学学报,2009,43(10):119-123.
    [7]POTTERS W V,CIBIS M,MARQUERING H A,et al.4DMRI-based wall shear stress quantification in the carotid bifurcation:a validation study in volunteers using computational fluid dynamics[J].Journal of Cardiovascular Magnetic Resonance,2014,16(S1):162-163.
    [8]刘莹,罗院明,殷艳飞,等.动脉内流-固耦合作用下两相血流动力学数值模拟[J].介入放射学杂志,2017,26(3):253-257.
    [9]孙正,刘存.基于血管内超声的动脉血管壁应变分布的计算流体力学仿真[J].生物医学工程学杂志,2015,32(6):1244-1248.
    [10]NESTOLA M G C,GIZZI A,CHERUBINI C,et al.Threeband decomposition analysis in multiscale FSI models of abdominal aortic aneurysms[J].International Journal of Modern Physics C.2016,27(2):1650017.
    [11]AL-RAWI M,AL-JUMAILY A M.Assessing abdominal aorta narrowing using computational fluid dynamics[J]..Medical&biological engineering&computing,2016,54(5):843-853.
    [12]CABALLERO A D,LAIN S.A.Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta[J].Cardiovascular Engineering and Technology,2013,4(2):103-130.
    [13]UPDEGROVE A,WILSON N M,MERKOW J,et al.SimVascular:An Open Source Pipeline for Cardiovascular Simulation[J].Annals of biomedical engineering,2017,45(3):525-541.
    [14]SOUDAH E,ROSSI R,IDELSOHN S,et al.A reducedorder model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems[J].Computational Mechanics,2014,54(4):1013-1022.
    [15]SOUSA L C,CASTRO C F,ANTONIO C C,et al.Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling[J]..Medical&biological engineering&computing,2014,52(11):971-983.
    [16]刘波,李志伟.数值模拟描述血管壁厚度对复杂颅内动脉瘤流固耦合分析结果的影响[J].中国组织工程研究,2014,18(11):1765-1773.
    [17]乔爱科,侯映映,阳侯.冠状动脉狭窄几何构型对血流储备分数影响的有限元分析[J].中国生物医学工程学报,2015,34(2):199-204.
    [18]TAYLOR C A,HUGHES T J R,ZARINS C K.Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta:Relevance to Atherosclerosis[J].Annals of biomedical engineering,1998,26:975-987.
    [19]WU Q Y,LIU X J,PAN L J,et al.Simulation Analysis of Blood Flow in Arteries of the Human Arm[J].Biomedical engineering:applications,basis,and communications,2017,29(4):1750031-1750038.
    [20]吕绍茂,钟华,陈丽君,等.构建颈内动脉瘤双向流固耦合模型的血流模拟[J].中国组织工程研究,2014,18(2):218-225.
    [21]OLUFSEN M S,NADIM A,SELGRADE J F.On Dedriving Lumped Models For Blood Flow And Pressure In The Systemic Arteries[J].Mathematical Biosciences And Engineering,2004,1(1):61-80.
    [22]GHARAHI H,ZAMBRANO B A,ZHU D C,et al.Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging[J].International journal of advances in engineering sciences and applied mathematics,2016,8(1):40-60.
    [23]JAHANGIRI M,SAGHAFIAN M,SADEGHI M R.Numerical simulation of non-Newtonian models effect on hemodynamic factors of pulsatile blood flow in elastic stenosed artery[J].Journal of Mechanical Science and Technology,2017,31(2):1003-1013.
    [24]郏科人,吴英成,裘茗烟,等.血管三维结构定量特征指标研究进展[J].中国数字医学,2017,12(7):1-20.
    [25]魏延宾,程洁.脉动流下血管支架耦合系统血流动力学实验研究[J].生命科学仪器,2017,15(4):28-32.
    [26]张业鹏,周敏,汤文浩.生物可降解血管支架的血流动力学数值模拟[J].中国组织工研究,2017,21(34):5532-5537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700