切比雪夫有理逼近方法在放射性核素特征量计算中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chebyshev Rational Approximation Method for Activation Property Calculations of Radioactive Nuclides
  • 作者:张彬航 ; 袁显宝 ; 张永红 ; 唐海波
  • 英文作者:ZHANG Binhang;YUAN Xianbao;ZHANG Yonghong;TANG Haibo;College of Mechanical & Power Engineering, China Three Gorges University;Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University;
  • 关键词:活化计算 ; 放射性核素特征量 ; 切比雪夫有理逼近方法 ; 活化手册
  • 英文关键词:activation calculation;;activation properties;;CRAM;;handbook of activation data
  • 中文刊名:JSWL
  • 英文刊名:Chinese Journal of Computational Physics
  • 机构:三峡大学机械与动力学院;三峡大学水电机械设备设计与维护湖北省重点实验室;
  • 出版日期:2018-07-19 12:11
  • 出版单位:计算物理
  • 年:2019
  • 期:v.36;No.188
  • 基金:国家自然科学基金(11805112);; 三峡大学高层次人才启动基金(1910103)资助项目
  • 语种:中文;
  • 页:JSWL201904010
  • 页数:8
  • CN:04
  • ISSN:11-2011/O4
  • 分类号:83-90
摘要
基于切比雪夫有理逼近方法,结合欧洲活化数据库EAF,自主开发了中子活化计算程序AMY,支持核素密度、活度、衰变热、潜在生物危害、清洁因子及接触剂量率等放射性核素特征量的精确计算.为了验证AMY的正确性和有效性,选取欧洲活化手册中的基础核数据库进行测试,并与活化程序FISPACT-2007的计算结果进行对比.结果表明两者的计算结果吻合较好,且AMY的计算效率略高于FISPACT-2007.
        AMY is a newly-developed code of handling neutron induced transmutation and activation in materials. The code is based on Chebyshev rational approximation method(CRAM) to solve Bateman equations and to deal with complex pattern of chains produced by sequences of neutron reaction processes.Varieties of material activation properties are provided in AMY, including activity, decay heat, biological hazard, dose rate, clearance index and gamma source spectra. In order to verify the code, basic nuclear database in handbook of activation data was selected for comparing with FISPACT-2007. It shows that results of AMY are in good agreement with FISPACT-2007, and calculation efficiency of AMY is slightly higher than FISPACT-2007.
引文
[1] YANG Shiyan,HE Manli,JIANG Danfeng,et al.Optimization design of radiation shielding materials for 235U fission source in reactor[J].Chinese Journal of Computational Physics,2017,34(1):73-81.
    [2] SHEN Yaosong,LI Kaibo,SHI Xueming,et al.Study on disposing high-level transuranic waste in a fusion fission reactor[J].Chinese Journal of Computational Physics,2017,34(2):142-148.
    [3] HAN Wenjing.Numerical study and preliminary application of activation method based on CRAM [D].North China Electric Power University,2015.
    [4] PAMPIN R,DAVIS A,IZQUIERDO J,et al.Developments and needs in nuclear analysis of fusion technology[J].Fusion Engineering & Design,2013,88(6-8):454-460.
    [5] ISOTALO A E,AARNIO P A.Comparison of depletion algorithms for large systems of nuclides[J].Annals of Nuclear Energy,2011,38(2):261-268.
    [6] FENSIN M L,UMBEL M.Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations[J].Progress in Nuclear Energy,2015,85:719-728.
    [7] FORREST R A.FISPACT-2007:User manual[M].EURATOM/UKAEA Fusion Association,2007.
    [8] CROFF A G.A user’s manual for ORIGEN2 computer code[R].Oak Ridge National Laboratory,1980.
    [9] CABELLOS O,SANZ J,RODRíGUEZ A,et al.Sensitivity and uncertainty analysis to burnup estimates on ADS using the ACAB Code[C]//International Conference on Nuclear Data for Science & Technology,American Institute of Physics,2005:1576-1579.
    [10] PUSA M,LEPPANEN J.Computing the matrix exponential in burnup calculations[J].Nuclear Science and Engineering,2010,164(2):140-150.
    [11] FORREST R A.The European activation file:EAF-2007 decay data library[R].UKAEA FUS 537,2007.
    [12] FORREST R A.The European activation file:EAF-2007 neutron-induced cross section library[R].UKAEA FUS 535,2007.
    [13] BATEMAN H.The solution of differential equations occurring in the theory of radioactive transformations[C]//Proceedings of the Cambridge Philosophical Society,1910,15(5):423-427.
    [14] PUSA M.Rational approximations to the matrix exponential in burnup calculations[J].Nuclear Science & Engineering the Journal of the American Nuclear Society,2011,169(2):155-167.
    [15] CARPENTER A J,RUTTAN A,VARGA R S.Extended numerical computations on the “1/9” conjecture in rational approximation theory[J].Lectures Notes in Mathematics,1984,1105(4):383-411.
    [16] ROSE D J,TARJAN R E.Algorithmic aspects of vertex elimination on directed graphs[J].Siam Journal on Applied Mathematics,1978,34(1):176-197.
    [17] TARJAN R E.Graph theory and Gaussian elimination[J].Sparse Matrix Computations,1976:3-22.
    [18] SUBLET J C,EASTWOOD J W,MORGAN J G.The FISPACT-II user manual[J].CCFE-R,2012,11(11).
    [19] WRIXON A D.New ICRP recommendations[J].Journal of Radiological Protection,2008,28(2):161-168.
    [20] YAMAMOTO M.Clearance levels for radionuclides and waste disosal:Approaches to develop concept and regulatory systems for clearance levels in overseas countries[J].J-STAGE,1999,34(4):348-352.
    [21] FORREST R A,TABASSO A,DANANI C,et al.Handbook of activation data calculated using EASY-2007[J].UKAEA FUS,2009,552:339.
    [22] SHIMOMURA Y,SAJI G.ITER safety and operational scenario[J].Fusion Engineering & Design,1998,s 39-40(3):17-32.
    [23] ZHANG Binhang,HAO Lijuan,et al.Research and verification of activation calculations based on Chebyshev rational approximation method [J].Nuclear Science and Engineering,2017,37(1):65-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700