超深碳酸盐岩水平井水力喷射定点深度酸化压裂技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fixed-Point Acid Fracturing Technology in the Ultra-Deep Carbonate Horizontal Well
  • 作者:周林波 ; 刘红磊 ; 解皓楠 ; 王洋 ; 李奎为
  • 英文作者:Zhou Linbo;Liu Honglei;Xie Haonan;Wang Yang;Li Kuiwei;State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development;Sinopec Research Institute of Petroleum Engineering;PetroChina Xinjiang Oilfield Company;Sinopec Northwest Oilfield Company;
  • 关键词:超深井 ; 定点酸化压裂 ; 水力喷射 ; 深穿透 ; 非均匀刻蚀
  • 英文关键词:ultra-deep well;;fixed-point acid fracturing;;hydraulic jet;;deep penetration;;non-uniform etching
  • 中文刊名:TZCZ
  • 英文刊名:Special Oil & Gas Reservoirs
  • 机构:页岩油气富集机理与有效开发国家重点实验室;中国石化石油工程技术研究院;中国石油新疆油田分公司;中国石化西北油田分公司;
  • 出版日期:2019-03-27 18:13
  • 出版单位:特种油气藏
  • 年:2019
  • 期:v.26;No.134
  • 基金:国家科技重大专项“超深井碳酸盐岩储层改造及测试关键技术”(2017ZX05005-005-004)
  • 语种:中文;
  • 页:TZCZ201903030
  • 页数:5
  • CN:03
  • ISSN:21-1357/TE
  • 分类号:162-166
摘要
埋深超过6 000 m的碳酸盐岩长裸眼水平井,常规笼统酸化压裂技术无法控制裂缝位置,浅、中深裸眼井分段酸化压裂技术也不适用。针对该问题,研发了超深井新型水力喷射定点酸化压裂技术。该技术通过2趟管柱实现定点深度酸化压裂:第1趟管柱下入喷射工具至目标位置,射孔并压开裂缝,产生应力薄弱区;第2趟管柱优化下入深度和压裂液类型,消除喷嘴节流压差和部分管柱摩阻,实现大排量酸化压裂施工,最高施工排量可达到10. 0 m~3/min,裂缝沿薄弱区继续延伸,完成对目标缝洞体的深穿透沟通。定点射孔起裂后,相比起裂前裂缝延伸阶段施工压力降低5. 0~14. 0 MPa,有效保证了后续主裂缝仍然沿起裂点扩展。采用加重压裂液作为射孔液,其密度和对应井段钻井液密度接近,既能降低射孔阶段的施工压力,又能消除起下管柱过程中的井控风险。在塔里木盆地阿克库勒凸起P5超深水平井应用该技术,实现了对目标储集体的准确沟通,酸化压裂后日产油达到107 t/d。该技术为超深井定点高效改造提供了有益的探索。
        The fracture initiation cannot be controlled by conventional acid fracturing for the carbonate open-hole horizontal well with long lateral section and a buried depth of more than 6000 m. The multi-stage acid fracturing for shallow,medium and deep open-hole well is also inapplicable to this case. A new fixed-point acid fracturing technology with hydraulic jet was developed to improve the acid fracturing performance. The fixed-point acid fracturing was realized by this new technology with dual-trip string running. In the first-trip string running,the hydraulic jet tool is loaded to the target position and the well is perforated and fractured to create a weak stress zone. In the second-trip string running,the depth and fracturing fluid are optimized to eliminate the nozzle throttling pressure difference and partial string friction. Large pumping rate acid fracturing is achieved and the maximum operation displacement can reach 10.0 m~3/min. The fractures continue to propagate along the weak zone to realize large-scale penetration of the fracture-cavity body. After the fracture initiation in the fixed-point,the operating pressure is reduced by 5.0 ~ 14.0 MPa than that without fracture initiation,which effectively ensures that the subsequent main fracture still propagate along the fracture initiation point. The weighted fracturing fluid is adopted as the perforating fluid and the corresponding density is close to that of the drilling fluid in the corresponding well section. The weighted perforating fluid cannot only reduce the operating pressure during perforating operation,but also eliminate the well-control risk during string running. This technology was applied in the Ultra-deep horizontal well P5 in the Akekule Uplift of Tarim Basin,which efficiently connected the target reservoir. The daily oil production is up to 107 t/d after acid fracturing treatment. This technology could provide a favorable exploration for the fixed-point efficient stimulation of ultra-deep well.
引文
[1]仝少凯,王祖文,杨小平,等水力喷砂定点射孔力学机理[J].石油钻采工艺,2017,39(3):293-297,302.
    [2]付玉坤,喻成刚,尹强,等.国内外页岩气水平井分段压裂工具发展现状与趋势[J].石油钻采工艺,2017,39(4):514-520.
    [3]张红静,徐康泰,刘立冬,等.非稳态渗流下砂砾岩水力裂缝扩展数值模拟[J].石油钻采工艺,2017,39(6):751-755.
    [4]EAST L,ROASTO J,FARABEE M,et al.Packedess multistage fracture-stimulation method using CT perforating and annular path pumping[J].SPE96732,2005:1-11.
    [5]张广清,陈勉.定向射孔水力压裂复杂裂缝形态[J].石油勘探与开发,2009,36(1):103-107.
    [6]姚利明,刘巨保,韩雪,等.井下喷射孔结构压降计算中流量系数的探讨[J].石油钻采工艺,2017,39(2):169-175.
    [7]赵国良.碳酸盐岩储层降低破裂压力机理研究[D].成都:西南石油大学,2010.
    [8]黄中伟,李根生.水力射孔参数对起裂压力影响的实验研究[J].中国石油大学学报(自然科学版),2007,31(6):48-50,54.
    [9]赵旭亮.刚性井下工具通过能力分析[J].石油机械,2011,39(10):66-68.
    [10]李根生,夏强,黄中伟,等.深井水力喷射压裂可行性分析及设计计算[J].石油钻探技术,2011,39(5):58-62.
    [11]马发明.不动管柱水力喷射逐层压裂技术[J].天然气工业,2010,30(8):1-4.
    [12]范鑫,李根生,黄中伟,等.水力喷射多级压裂中水力封隔效果的数值模拟[J].石油机械,2015,43(4):82-88.
    [13]田守嶒,李根生,黄中伟,等.连续油管水力喷射压裂技术[J].天然气工业,2008,28(8):61-63.
    [14]张智勇,蒋廷学,梁冲,等.胶凝酸反应动力学试验研究[J].钻井液与完井液,2005,22(5):28-32.
    [15]周林波.高导流自支撑酸压室内实验研究[J].特种油气藏,2017,24(4):154-160.
    [16]JIA NIERODE D E,KRUK K F.An evaluation of acid fluid loss additives,retarded acids,and acidized fracture conductivity[C].SPE4549,1973:1-4.
    [17]周林波,宋志峰,张俊江,等.MX井深层白云岩储层非均匀酸压技术[J].特种油气藏,2017,24(6):161-164.
    [18]姚茂堂,牟建业,李栋,等.高温高压碳酸盐岩地层酸蚀裂缝长期导流能力实验研究[J].科学技术与工程,2015,15(2):193-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700