基于太阳能光热发电的热化学储能体系研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of thermochemical energy storage system based on solar thermal power generation
  • 作者:汪德良 ; 张纯 ; 杨玉 ; 张磊 ; 白文刚 ; 李红智 ; 姚明宇
  • 英文作者:WANG Deliang;ZHANG Chun;YANG Yu;ZHANG Lei;BAI Wengang;LI Hongzhi;YAO Mingyu;Xi'an Thermal Power Research Institute Co., Ltd.;
  • 关键词:太阳能 ; 光热发电 ; 储能 ; 储热 ; 热化学储能 ; 研究进展
  • 英文关键词:solar energy;;solar thermal power generation;;energy storage;;thermal energy storage;;thermochemical energy storage;;research progress
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:西安热工研究院有限公司;
  • 出版日期:2019-07-09 10:26
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.392
  • 基金:国家自然科学基金项目(51706181,51806172);; 国家重点研发计划项目(2018YFB1501004);; 中国华能集团有限公司总部科技项目(HNKJ15-H07);; 西安热工研究院有限公司研究开发基金(ZD-18-TYK13)~~
  • 语种:中文;
  • 页:RLFD201907001
  • 页数:9
  • CN:07
  • ISSN:61-1111/TM
  • 分类号:7-15
摘要
太阳能光热发电对缓解化石能源的紧张和减少碳排放具有深远的意义,大规模高温储热是太阳能光热发电的关键,热化学储能由于储能密度高等优势在太阳能光热发电领域具有广阔的应用前景。本文综述了热化学储能的基本原理和特点,详细介绍了几种有前景的热化学储能体系及其研究现状,其中包括金属氢化物储能体系、碳酸盐储能体系、氢氧化物储能体系、金属氧化物储能体系等,并总结了各种储能体系现存的问题。最后,针对热化学储能存在的问题,指出了未来热化学储能的研究方向。
        The solar thermal power generation is of great significance to alleviate the shortage of fossil energy and reducing carbon emissions, while large-scale high-temperature thermal storage is the key to solar thermal power generation. Thermochemical energy storage has broad application prospects in the field of solar thermal power generation due to its high energy storage density. In this paper, the basic principles and characteristics of thermochemical energy storage are reviewed. Several promising thermochemical energy storage systems and their research status are introduced in this paper, including metal hydride energy storage system, carbonate energy storage system, hydroxide energy storage system and metal oxide energy storage system. The existing problems of various energy storage systems are also summarized. Finally, the future research direction of thermochemical energy storage is also pointed out based on the existing problems.
引文
[1]吴娟,龙新峰.太阳能热化学储能研究进展[J].化工进展,2014,33(12):3238-3245.WU Juan,LONG Xinfeng.Research progress of solar thermochemical energy storage[J].Chemical Industry and Engineering Progress,2014,33(12):3238-3245.
    [2]孙峰,彭浩,凌祥.中高温热化学反应储能研究进展[J].储能科学与技术,2015,4(6):577-584.SUN Feng,PENG Hao,LING Xiang.Progress in medium to high temperature thermochemical energy storage technologies[J].Energy Storage Science and Technology,2015,4(6):577-584.
    [3]王新赫,杜轩成,魏进家.不同太阳能热化学储能体系的研究进展[J].科学通报,2017,62(31):3631-3642.WANG Xinhe,DU Xuancheng,WEI Jinjia.Research progress of different solar thermochemical energy storage systems[J].Chinese Science Bulletin,2017,62(31):3631-3642.
    [4]PARDO P,DEYDIER A,MINVIELLEANXIONNAZ Z,et al.A review on high temperature thermochemical heat energy storage[J].Renewable&Sustainable Energy Reviews,2014,32(5):591-610.
    [5]REISER A,BOGDANOVIC B,SCHLICHTE K.The application of Mg-based metal-hydrides as heat energy storage systems[J].International Journal of Hydrogen Energy,2000,25(5):425-430.
    [6]KUMAR S,KOJIMA Y,DEY G K.Morphological effects of Nb2O5 on Mg-MgH2 system for thermal energy storage application[J].International Journal of Hydrogen Energy,2018,43(2):809-816.
    [7]KUMAR S,KOJIMA Y,KAIN V.Nano-engineered Mg-Mg H2 system for solar thermal energy storage[J].Solar Energy,2017,150:532-537.
    [8]ASWIN N,DUTTA P,MURTHY S S.Screening of metal hydride pairs for closed thermal energy storage systems[J].Applied Thermal Engineering,2016,109:949-957.
    [9]WANG Y,CHEN Z Q.Numerical simulation of thermochemical energy storage in kW-scale based on Mg/Mg H2[J].Energy Procedia,2018,144:132-142.
    [10]MELLOULI S,ASKRI F,EDACHERIAN A,et al.Performance analysis of a thermal energy storage system based on paired metal hydrides for concentrating solar power plants[J].Applied Thermal Engineering,2018,144:1017-1029.
    [11]NYAMSI S N,LOTOTSKYY M,TOLJ I.Selection of metal hydrides-based thermal energy storage:energy storage efficiency and density targets[J].International Journal of Hydrogen Energy,2018,43:22568-22583.
    [12]ANDRéL,ABANADES S.Evaluation and performances comparison of calcium,strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J].Journal of Energy Storage,2017,13:193-205.
    [13]CHEN X,JIN X,LIU Z,et al.Experimental investigation on the CaO/CaCO3 thermochemical energy storage with Si O2 doping[J].Energy,2018,155:128-138.
    [14]BENITEZ-GUERRERO M,VALVERDE J M,SANCHEZ-JIMENEZ P E,et al.Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in concentrated solar power plants[J].Solar Energy,2017,153:188-199.
    [15]HAN R,GAO J,WEI S,et al.Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage[J].Applied Energy,2018,231:412-422.
    [16]KATO Y,WATANABE Y,YOSHIZAWA Y.Application of inorganic oxide/carbon dioxide reaction system to a chemical heat pump[C].Energy Conversion Engineering Conference.IEEE,1996.
    [17]MEIER A,BONALDI E,CELLA G M,et al.Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime[J].Energy,2004,29(5/6):811-821.
    [18]EDWARDS S E B,MATERIC V.Calcium looping in solar power generation plants[J].Solar Energy,2012,86(9):2494-2503.
    [19]ROBKOPF C,AFFLERBACH S,SCHMIDT M,et al.Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J].Energy Conversion&Management,2015,97:94-102.
    [20]KARIYA J,RYU J,KATO Y.Development of thermal storage material using vermiculite and calcium hydroxide[J].Applied Thermal Engineering,2016,94:186-192.
    [21]KARIYA J,KATO Y.Development of thermal energy storage material using porous silicon carbide and calcium hydroxide[J].Energy Procedia,2017,131:395-406.
    [22]SHKATULOV A,ARISTOV Y.Modification of magnesium and calcium hydroxides with salts:an efficient way to advanced materials for storage of middle-temperature heat[J].Energy,2015,85:667-676
    [23]LINDER M,RO?KOPF C,SCHMIDT M,et al.Thermochemical energy storage in kW-scale based on Ca O/Ca(OH)2[J].Energy Procedia,2014,49:888-897.
    [24]CRIADO Y A,ALONSO M,ABANADES J C,et al.Conceptual process design of a Ca O/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J].Applied Thermal Engineering,2014,73(1):1087-1094.
    [25]MüLLER D,KNOLL C,ARTNER W,et al.Combining in-situ X-ray diffraction with thermogravimetry and differential scanning calorimetry:an investigation of Co3O4,MnO2 and PbO2 for thermochemical energy storage[J].Solar Energy,2017,153:11-24.
    [26]SINGH A,TESCARI S,LANTIN G,et al.Solar thermochemical heat storage via the Co3O4/CoO looping cycle:storage reactor modelling and experimental validation[J].Solar Energy,2017,144:453-465.
    [27]NEKOKAR N,POURABDOLI M,HAMIDI A,et al.Effect of mechanical activation on thermal energy storage properties of Co3O4/CoO system[J].Advanced Powder Technology,2018,19:333-340.
    [28]龙新峰,廖葵.氨基热化学储能反应器的热性能分析[J].热力发电,2008,37(11):59-63.LONG Xinfeng,LIAO Kui.Analysis about thermal performance of ammonia-based thermochemical energystoring reactor[J].Thermal Power Generation,2008,37(11):59-63.
    [29]龙新峰,廖葵.太阳能热发电中氨基放热反应器的数值模拟[J].华南理工大学学报(自然科学版),2008(7):21-25.LONG Xinfeng,LIAO Kui.Numerical simulation of ammonia-based exothermic reactor used in solar thermal power generation[J].Journal of South China University of Technology(Natural Science Edition),2008(7):21-25.
    [30]CHEN C,ARYAFAR H,LOVEGROVE K M,et al.Modeling of ammonia synthesis to produce supercritical steam for solar thermochemical energy storage[J].Solar Energy,2017,155:363-371.
    [31]CHEN C,LOVEGROVE K M,SEPULVEDA A,et al.Design and optimization of an ammonia synthesis system for ammonia-based solar thermochemical energy storage[J].Solar Energy,2018,159:992-1002.
    [32]CHEN C,ZHAO L,LAVINE A S.Feasibility of using ammonia-based thermochemical energy storage to produce high-temperature steam or sCO2[J].Solar Energy,2018,176:638-647.
    [33]CHEN C,ZHAO L,KONG M,et al.Heat recovery from an autothermal ammonia synthesis reactor for solar thermochemical energy storage[J].Solar Energy,2018,176:256-266.
    [34]吴娟.热化学储能体系Ca(OH)2/CaO+H2O的性能研究[D].广州:华南理工大学,2015:12-13.WU Juan.Study of properties of thermochemical energy storage of Ca(OH)2/CaO+H2O[D].Guangzhou:South China University of Technology,2015:12-13.
    [35]陈源,丁静,陆建峰,等.甲烷二氧化碳重整热化学储能实验研究[J].工程热物理学报,2014,35(8):1591-1594.CHEN Yuan,DING Jing,LU Jianfeng,et al.Experimental study on methane reforming with carbon dioxide for thermochemical energy storage[J].Journal of Engineering Thermophysics,2014,35(8):1591-1594.
    [36]杜娟,洪宇翔,杨晓西,等.甲烷重整热化学储能实验及数值模拟研究[J].太阳能学报,2015,36(11):2765-2771.DU Juan,HONG Yuxiang,YANG Xiaoxi,et al.Studies on experimental and numerical simulation for CO2reforming of CH4[J].Acta Energiae Solaris Sinica,2015,36(11):2765-2771.
    [37]ZHANG F S,SONG Z L,ZHU J Z,et al.Process of CH4-CO2 reforming over Fe/SiC catalyst under microwave irradiation[J].Science of the Total Environment,2018,639:1148-1155.
    [38]ZHANG J,WEI N,ZHONG H X,et al.High performance Ni O/MOx-Ce0.5Zr0.5O2 catalysts promoted with metal oxides for CH4-H2O reforming[J].Chemical Physics Letters,2019,714:74-80.
    [39]LU J,YUAN C,JING D,et al.High temperature energy storage performances of methane reforming with carbon dioxide in tubular packed reactor[J].Energy Procedia,2014,61:407-410.
    [40]李威,司怀家.CH4重整储能反应过程中积碳效应的模拟与分析[J].化工技术与开发,2017,46(7):44-48.LI Wei,SI Huaijia.Simulation and analysis of carbonization effect in CH4 reforming energy storage reaction[J].Technology&Development of Chemical Industry,2017,46(7):44-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700