惠更斯电磁超构表面微波天线的研究进展(特邀文章)(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in microwave Huygens' metasurface antennas (Invited)
  • 作者:陈志宁 ; 刘炜 ; 李腾 ; 林丰涵 ; 江梅
  • 英文作者:CHEN Zhi Ning;LIU Wei;LI Teng;LIN Feng Han;JIANG Mei;Department of Electrical and Computer Engineering,National University of Singapore;Shanghai Key Laboratory of Electromagnetic Environment Effects for Aerospace Vehicle;
  • 关键词:电磁超构表面 ; 超构材料 ; 惠更斯原理 ; 色散特性分析 ; 特征模分析 ; 微波超构表面天线 ; 低剖面宽带天线 ; 超构表面透镜天线 ; 多波束天线 ; 波束控制 ; 天线去耦合
  • 英文关键词:metasurface;;metamaterial;;Huygens' Principle;;dispersion analysis;;characteristic mode analysis;;microwave metasurface antenna;;low-profile broadband antenna;;metasurface lens antenna;;multibeam antenna;;beam steering;;antenna decoupling
  • 中文刊名:DBKX
  • 英文刊名:Chinese Journal of Radio Science
  • 机构:新加坡国立大学电气与计算机工程系;上海市航空航天器电磁环境效应重点实验室;
  • 出版日期:2018-06-27 09:05
  • 出版单位:电波科学学报
  • 年:2018
  • 期:v.33
  • 语种:英文;
  • 页:DBKX201803003
  • 页数:17
  • CN:03
  • ISSN:41-1185/TN
  • 分类号:7-23
摘要
惠更斯电磁超构表面脱胎于现代三维超构材料,是一种特殊的二维亚波长阵列结.基于经典电磁学惠更斯等效原理,惠更斯电磁超构表面可以灵活地调控电磁波的传播和电磁场的分布,其独特的电磁特性给天线的创新带来了巨大的机遇.文章将综述惠更斯电磁超构表面在微波天线中的研究进展,简要介绍惠更斯表面的基本概念和原理并总结其在微波天线设计中的应用,重点阐述三种惠更斯超构表面天线技术及其设计案例.最后,展望惠更斯超构表面在天线工程中的广阔应用前景.
        Based on classic electromagnetic Huygens' Principle and the concept of modern metamaterials,metamaterial Huygens surface,namely,metasurface(MTS)is presented to be the two-dimensional analogues of metamaterials.With the dense arrays of electrically small unit cells,the MTS can control electromagnetic waves and fields in either usual or unusual ways.Such unique electromagnetic properties greatly offer additional opportunities to innovate new antennas.This paper updates the latest progress in the MTS based antenna at microwave bands.First,the concept of the MTS is briefly introduced with a summary of applications of the MTS in microwave antenna design.After that,three of selected MTS based antenna techniques are elaborated with design examples.Finally,the promising applications of the MTS in antenna engineering are commented.
引文
[1]KILDISHEV A V,BOLTASSEVA A,SHALAEV VM.Planar photonics with metasurfaces[J].Science,2013,339(6125):1232009.
    [2]YU N,GENEVET P,KATS M A,et al.Light propagation with phase discontinuities:generalized laws of reflection and refraction[J].Science,2011,334(6054):333-337.
    [3]GENEVET P,YU N,AIETA F,et al.Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J].Applied physics letters,2012,100(1):169.
    [4]MAXWELL J C.A treatise on electricity and magnetism[J].Nature,1904,1(182):478-480.
    [5]LOVE A E H.The integration of the equations of propagation of electric waves[J].Philosophical transactions of the Royal Society A:mathematical physical and engineering sciences,1901,197(287-299):1-45.
    [6]MACDONALD H M.The diffraction of electric waves round a perfectly reflecting obstacle[J].Philosophical transactions of the Royal Society A:mathematical physical and engineering sciences,1911,210(459-470):113-144.
    [7]LARMOR J.On the mathematical expression of the principle of Huygens[J].Proceedings of the London Mathematical Society,1904,2(1):1-13.
    [8]SCHELKUNOFF S A.Some equivalence theorems of electromagnetics and their application to radiation problems[J].Bell Labs technical journal,1936,15(1):92-112.
    [9]SARABANDI K,BEHDAD N.A frequency selective surface with miniaturized elements[J].IEEE transactions on antennas and propagation,2007,55(5):1239-1245.
    [10]BAYATPUR F,SARABANDI K.Single-layer highorder miniaturized-element frequency-selective surfaces[J].IEEE transactions on microwave theory and techniques,2008,56(4):774-781.
    [11]LUUKKONEN O,SIMOVSKI C R,RAISANEN AV,et al.An efficient and simple analytical model for analysis of propagation properties in impedance waveguides[J].IEEE transactions on microwave theory and techniques,2008,56(7):1624-1632.
    [12]BAYATPUR F,SARABANDI K.A tunable metamaterial frequency-selective surface with variable modes of operation[J].IEEE transactions on microwave theory and techniques,2009,57(6):1433-1438.
    [13]AL-JOUMAYLY M A,BEHDAD N.A generalized method for synthesizing low-profile,band-pass frequency selective surfaces with non-resonant constituting elements[J].IEEE transactions on antennas and propagation,2010,58(12):4033-4041.
    [14]BAYATPUR F,SARABANDI K.Design and analysis of a tunable miniaturized-element frequencyselective surface without bias network[J].IEEEtransactions on antennas and propagation,2010,58(4):1214-1219.
    [15]KAWAKAMI Y,HORI T,FUJIMOTO M,et al.Low-profile design of meta-surface by considering filtering characteristics of FSS[C]//International Workshop on Antenna Technology,March 1-3,2010,Lisbon,Portugal.New York:IEEE,2016:1-4.
    [16]RA’DI Y,ASADCHY V S,TRETYAKOV S A.One-way transparent sheets[J].Physics review B,2014,89(7):163-167.
    [17]ZHU B O,CHEN K,JIA N,et al.Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J].Scientific reports,2014,4:4971.
    [18]VALLECCHI A,LANGLEY R J,SCHUCHINSKYA G.Metasurfaces with interleaved conductors:phenomenology and applications to frequency selective and high impedance surfaces[J].IEEE transactions on antennas and propagation,2016,64(2):599-608.
    [19]YANG F R,MA K P,QIAN Y,et al.A uniplanar compact photonic-bandgap(UC-PBG)structure and its applications for microwave circuit[J].IEEE transactions on microwave theory and techniques,1999,47(8):1509-1514.
    [20]SIEVENPIPER D,ZHANG L,BROAS R F J,et al.High-impedance electromagnetic surfaces with a forbidden frequency band[J].IEEE transactions on microwave theory and techniques,1999,47(11):2059-2074.
    [21]YANG F,RAHMAT-SAMII Y.Microstrip antennas integrated with electromagnetic band-gap(EBG)structures:a low mutual coupling design for array applications[J].IEEE transactions on antennas and propagation,2003,51(10):2936-2946.
    [22]SANADA A,CALOZ C,ITOH T.Planar distributed structures with negative refractive index[J].IEEEtransactions on microwave theory and techniques,2004,52(4):1252-1263.
    [23]MACI S,CAIAZZO M,CUCINI A,et al.A polezero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab[J].IEEE transactions on antennas and propagation,2005,53(1):70-81.
    [24]ZHANG Y,VON HAGEN J,YOUNIS M,et al.Planar artificial magnetic conductors and patch antennas[J].IEEE transactions on antennas and propagation,2003,51(10):2704-2712.
    [25]ERENTOK A,LULJAK P L,ZIOLKOWSKI R W.Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications[J].IEEE transactions on antennas and propagation,2005,53(1):160-172.
    [26]FERESIDIS A P,GOUSSETIS G,WANG S,et al.Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas[J].IEEE transactions on antennas and propagation,2005,53(1):209-215.
    [27]KERN D J,WERNER D H,MONORCHIO A,et al.The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces[J].IEEE transactions on antennas and propagation,2005,53(1):8-17.
    [28]SIMOVSKI C R,MAAGT P D,MELCHAKOVA IV.High-impedance surfaces having stable resonance with respect to polarization and incidence angle[J].IEEE transactions on antennas and propagation,2005,53(3):908-914.
    [29]BROAS R F J,SIEVENPIPER D F,YABLONO-VITCH E.An application of high-impedance ground planes to phased array antennas[J].IEEE transactions on antennas and propagation,2005,53(4):1377-1381.
    [30]GOUSSETIS G,FERESIDIS A P,VARDAXOGLOU JC.Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate[J].IEEE transactions on antennas and propagation,2006,54(1):82-89.
    [31]HIRANANDANI M A,YAKOVLEV A B,KISHKA A.Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications[J].IEE proceedings microwaves antennas and propagation,2006,153(5):487-493.
    [32]POZAR D M.Wideband reflectarrays using artificial impedance surfaces[J].Electronics letters,2007,43(3):148-149.
    [33]SIEVENPIPER D F,SCHAFFNER J H,SONG HJ,et al.Two-dimensional beam steering using an electrically tunable impedance surface[J].IEEEtransactions on antennas and propagation,2003,51(10):2713-2722.
    [34]SIEVENPIPER D F.Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface[J].IEEE transactions on antennas and propagation,2005,53(1):236-247.
    [35]MIAS C,YAP J H.A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid[J].IEEE transactions on on antennas and propagation,2007,55(7):1955-1962.
    [36]BAGGEN R,MARTINEZ-VAZQUEZ M,LEISS J,et al.Low profile GALILEO antenna using EBG technology[J].IEEE transactions on antennas and propagation,2008,56(3):667-674.
    [37]HASHEMI S M,TRETYAKOV S A,SOLEIMANIM,et al.Dual-polarized angularly stable highimpedance surface[J].IEEE transactions on antennas and propagation,2013,61(8):4101-4108.
    [38]RA’DI Y,ASADCHY V S,TRETYAKOV S A.Tailoring reflections from thin composite metamirrors[J].IEEE transactions on antennas and propagation,2014,62(7):3749-3760.
    [39]LIANG J,YANG H Y D.Microstrip patch antennas on tunable electromagnetic band-gap substrates[J].IEEE transactions on antennas and propagation,2009,57(6):1612-1617.
    [40]ZHU B O,ZHAO J,FENG Y.Active impedance metasurface with full 360°reflection phase tuning[J].Scientific reports,2013,3:3059.
    [41]SLOBOZHANYUK A P,PODDUBNY A N,RAAI-JMAKERS A J,et al.Enhancement of magnetic resonance imaging with metasurfaces[J].Advanced materials,2016,28(9):1832-1838.
    [42]YE Y,HE S.90°polarization rotator using a bilayered chiral metamaterial with giant optical activity[J].Applied physics letters,2010,96(20):788.
    [43]ZHAO Y,BELKIN M A,ALA.Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J].Nature communications,2012,3(3):870.
    [44]WEI Z,CAO Y,FAN Y,et al.Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators[J].Applied physics letters,2011,99(22):221907.
    [45]GRADY N K,HEYES J E,CHOWDHURY D R,et al.Terahertz metamaterials for linear polarization conversion and anomalous refraction.[J].Science,2013,340(6138):1304-1307.
    [46]CHIANG Y J,YEN T J.A composite-metamaterialbased terahertz-wave polarization rotator with an ultrathin thickness,an excellent conversion ratio,and enhanced transmission[J].Applied physics letters,2013,102(1):011129.
    [47]YE Y,LI X,ZHUANG F,et al.Homogeneous circular polarizers using a bilayered chiral metamaterial[J].Applied physics letters,2011,99(3):031111.
    [48]PFEIFFER C,ZHANG C,RAY V,et al.High performance bianisotropic metasurfaces:asymmetric transmission of light[J].Physical review letters,2014,113(2):023902.
    [49]DIETLEIN C,LUUKANEN A,POPOVI Z,et al.A W-band polarization converter and isolator[J].IEEE transactions on antennas and propagation,2007,55(6):1804-1809.
    [50]DOUMANIS E,GOUSSETIS G,GOMEZ-TORNEROJ L,et al.Anisotropic impedance surfaces for linear to circular polarization conversion[J].IEEE transactions on antennas and propagation,2012,60(1):212-219.
    [51]LERNER D.A wave polarization converter for circular polarization[J].IEEE transactions on antennas and propagation,2003,13(1):3-7.
    [52]YOUNG L,ROBINSON L,HACKING C.Meanderline polarizer[J].IEEE transactions on antennas and propagation,1973,21(3):376-378.
    [53]EULER M,FUSCO V,CAHILL R,et al.325GHz Single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor[J].IEEEtransactions on antennas and propagation,2010,58(7):2457-2459.
    [54]BAENA J D,DEL RISCO J P,SLOBOZHANYUKA P,et al.Self-complementary metasurfaces for linear-to-circular polarization conversion[J].Physical review B,2015,92(24):245413.
    [55]PU M,CHEN P,WANG Y,et al.Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J].Applied physics letters,2013,102(13):131906.
    [56]SIEVENPIPER D,SCHAFFNER J,LOO R,et al.A tunable impedance surface performing as a reconfigurable beam steering reflector[J].IEEE transactions on antennas and propagation,2002,50(3):384-390.
    [57]CHSHELOKOVA A V,KAPITANOVA P V,POD-DUBNY A N,et al.Hyperbolic transmission-line metamaterials[J].Journal of applied physics,2012,112(7):077405.
    [58]LI M,AL-JOUMAYLY M A,BEHDAD N.Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces[J].IEEE transactions on antennas and propagation,2013,61(3):1166-1179.
    [59]PFEIFFER C,GRBIC A.Metamaterial Huygens’surfaces:tailoring wave fronts with reflectionless sheets[J].Physical review letters,2013,110(19):197401.
    [60]PFEIFFER C,GRBIC A.Cascaded metasurfaces for complete phase and polarization control[J].Applied physics letters,2013,102(23):1232009.
    [61]PFEIFFER C,GRBIC A.Millimeter-wave transmitarrays for wavefront and polarization control[J].IEEE transactions on microwave theory and techniques,2013,61(12):4407-4417.
    [62]KHORASANINEJAD M,AIETA F,KANHAIYAP,et al.Achromatic metasurface lens at telecommunication wavelengths[J].Nano letters,2015,15(8):5358-5362.
    [63]SUN S,HE Q,XIAO S,et al.Gradient-index metasurfaces as a bridge linking propagating waves and surface waves[J].Nature materials,2012,11(5):426-431.
    [64]KUZNETSOV S A,ASTAFEV M A,BERUETEM,et al.Planar holographic metasurfaces for terahertz focusing[J].Scientific reports,2015,5:7738.
    [65]HIRVONEN T,ALA-LAURINAHO J P S,TUOVIN-EN J,et al.A compact antenna test range based on a hologram[J].IEEE transactions on antennas and propagation,1997,45(8):1270-1276.
    [66]ERFANI E,NIROO-JAZI M,TATU S.A high-gain broadband gradient refractive index metasurface lens antenna[J].IEEE transactions on antennas and propagation,2016,64(5):1968-1973.
    [67]LI H P,WANG G M,LIANG J G,et al.Singlelayer focusing gradient metasurface for ultrathin planar lens antenna application[J].IEEE transactions on antennas and propagation,2017,65(3):1452-1457.
    [68]JIANG M,CHEN Z N,ZHANG Y,et al.Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO[J].IEEEtransactions on antennas and propagation,2017,65(2):464-472.
    [69]YEAP S B,QING X,CHEN Z N,et al.Metamaterial lens for magnetic resonance imaging[C]//International Workshop on Antenna Technology,March 4-6,2015.Seoul:IEEE,2015:202-205.
    [70]RA’DI Y,SIMOVSKI C R,TRETYAKOV S A.Thin perfect absorbers for electromagnetic waves:theory,design,and realizations[J].Physical review applied,2015,3(3):037001.
    [71]ENGHETA N.Thin absorbing screens using metamaterial surfaces[C]//IEEE Antennas and Propagation Society International Symposium,June 16-21,2002.San Antoni:IEEE,2002:392-395.
    [72]LANDY N I,SAJUYIGBE S,MOCK J J,et al.Perfect metamaterial absorber[J].Physical review letters,2008,100(20):207402.
    [73]TAO H,LANDY N I,BINGHAM C M,et al.Ametamaterial absorber for the terahertz regime:design,fabrication and characterization[J].Optics express,2008,16(10):7181-7188.
    [74]KATS M A,SHARMA D,LIN J,et al.Ultra-thin perfect absorber employing a tunable phase change material[J].Applied physics letters,2012,101(22):221101.
    [75]ZHAO J,CHEN J,QI M Q,et al.A tunable metamaterial absorber using varactor diodes[J].New journal of physics,2013,15(4):043049.
    [76]DENG T,LI Z W,CHEN Z N.Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials[J].IEEE transactions on antennas and propagation,2017,65(11):5886-5894.
    [77]YU N,CAPASSO F.Flat optics with designer metasurfaces[J].Nature materials,2014,13(2):139-150.
    [78]GLYBOVSKI S B,TRETYAKOV S A,BELOV PA,et al.Metasurfaces:from microwaves to visible[J].Physics reports,2016,634:1-72.
    [79]CHEN H T,TAYLOR A J,YU N.A review of metasurfaces:physics and applications[J].Reports on progress in physics physical society,2016,79(7):076401.
    [80]GENEVET P,CAPASSO F.Holographic optical metasurfaces:a review of current progress[J].Reports on progress in physics physical society,2015,78(2):024401.
    [81]WALIA S,SHAH C M,GUTRUF P,et al.Flexible metasurfaces and metamaterials:a review of materials and fabrication processes at micro-and nano-scales[J].Applied physics reviews,2015,2(1):011303.
    [82]CHEN Z N.Metamaterials and metamaterial-based antenna technology[J].Journal of Shanghai University(natural science edition),2014,20(5):531-540.
    [83]LIU W E I,CHEN Z N,QING X,et al.Miniaturized wideband metasurface antennas[J].IEEE transactions on antennas and propagation,2017,65(12):7345-7349.
    [84]CHEN Z N,LIU W,QING X.Low-profile broadband mushroom and metasurface antennas[C]//International Workshop on Antenna Technology,March 1-3,2017.Athens:IEEE,2017:13-16.
    [85]LIN F H,CHEN Z N.Low-profile wideband metasurface antennas using characteristic mode analysis[J].IEEE transactions on antennas and propagation,2017,65(4):1706-1713.
    [86]SYED NASSER S S,LIU W,CHEN Z N.Wide bandwidth and enhanced gain of a low-profile dipole antenna achieved by integrated suspended metasurface[J].IEEE transactions on antennas and propagation,2018,66(3):1540-1544.
    [87]YUE T,JIANG Z H,WERNER D H.Compact,Wideband antennas enabled by interdigitated capacitorloaded metasurfaces[J].IEEE transactions on antennas and propagation,2016,64(5):1595-1606.
    [88]NASIMUDDIN N,CHEN Z N,QING X.Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface:metamaterial-based wideband CP rectangular microstrip antenna[J].IEEE antennas and propagation magazine,2016,58(2):39-46.
    [89]MINATTI G,FAENZI M,SABBADINI M,et al.Bandwidth of gain in metasurface antennas[J].IEEEtransactions on antennas and propagation,2017,65(6):2836-2842.
    [90]CAMERON T R,ELEFTHERIADES G V.Experimental validation of a wideband metasurface for wideangle scanning leaky-wave antennas[J].IEEE transactions on antennas and propagation,2017,65(10):5245-5256.
    [91]MARTINIS M,MAHDJOUBI K,SAULEAU R,et al.Bandwidth behavior and improvement of miniature cavity antennas with broadside radiation pattern using a metasurface[J].IEEE transactions on antennas and propagation,2015,63(5):1899-1908.
    [92]ERFANI E,NIROO-JAZI M,TATU S.A high-gain broadband gradient refractive index metasurface lens antenna[J].IEEE transactions on antennas and propagation,2016,64(5):1968-1973.
    [93]TA S X,PARK I.Low-profile broadband circularly polarized patch antenna using metasurface[J].IEEEtransactions on antennas and propagation,2015,63(12):5929-5934.
    [94]YANG F,DENG R,XU S,et al.Design and experiment of a near-zero-thickness high-gain transmitreflect-array antenna using anisotropic metasurface[J].IEEE transactions on antennas and propagation,2018.(in press)
    [95]LI D,SZABO Z,QING X,et al.A high gain antenna with an optimized metamaterial inspired superstrate[J].IEEE transactions on antennas and propagation,2012,60(12):6018-6023.
    [96]LIN F H,CHEN Z N.A method of suppressing higher-order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis[J].IEEE transactions on antennas and propagation,2018,66(4):1894-1902.
    [97]SALIH A A,CHEN Z N,MOUTHAAN K.Characteristic mode analysis and metasurface-based suppression of higher order modes of a 2×2 closely spaced phased array[J].IEEE transactions on antennas and propagation,2017,65(3):1141-1150.
    [98]BERNETY H M,YAKOVLEV A B.Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks[J].IEEE transactions on antennas and propagation,2015,63(4):1554-1563.
    [99]PAN S,CASTER F,HEYDARI P,et al.A 94-GHz extremely thin metasurface-based BiCMOS on-chip antenna[J].IEEE transactions on antennas and propagation,2014,62(9):4439-4451.
    [100]CHAMOK N,ANTHONY T K,WEISS S J,et al.Ultra-thin UHF broadband antenna on a non-uniform aperiodic(NUA)metasurface[J].IEEE antennas and propagation magazine,2015,57(2):167-180.
    [101]JIANG Z H,BROCKER D E,SIEBER P E,et al.Acompact,low-profile metasurface-enabled antenna for wearable medical body-area network devices[J].IEEEtransactions on antennas and propagation,2014,62(8):4021-4030.
    [102]YUE T,JIANG Z H,PANARETOS A H,et al.Acompact dual-band antenna enabled by a complementary split-ring resonator-loaded metasurface[J].IEEEtransactions on antennas and propagation,2017,65(12):6878-6888.
    [103]LI H P,WANG G M,LIANG J G,et al.Singlelayer focusing gradient metasurface for ultrathin planar lens antenna application[J].IEEE transactions on antennas and propagation,2017,65(3):1452-1457.
    [104]LI H,WANG G,XU H X,et al.X-band phasegradient metasurface for high-gain lens antenna application[J].IEEE transactions on antennas and propagation,2015,63(11):5144-5149.
    [105]TURPIN J P,WU Q,WERNER D H,et al.Nearzero-index metamaterial lens combined with AMCmetasurface for high-directivity low-profile antennas[J].IEEE transactions on antennas and propagation,2014,62(4):1928-1936.
    [106]SHI Y,LI K,WANG J,et al.An etched planar metasurface half Maxwell fish-eye lens antenna[J].IEEE transactions on antennas and propagation,2015,63(8):3742-3747.
    [107]GREGORY M D,BOSSARD J A,MORGAN Z C PO,et al.A low cost and highly efficient metamaterial reflector antenna[J].IEEE transactions on antennas and propagation,2018,66(3):1545-1548.
    [108]CHEN L,QU S W,CHEN B J,et al.Terahertz metasurfaces for absorber or reflectarray applications[J].IEEE transactions on antennas and propagation,2017,65(1):234-241.
    [109]GONZALEZ-OVEJERO D,MINATTI G,CHAT-TOPADHYAY G,et al.Multibeam by metasurface antennas[J].IEEE transactions on antennas and propagation,2017,65(6):2923-2930.
    [110]HONGNARA T,CHAIMOOL S,AKKARAEKTHA-LIN P,et al.Design of compact beam-steering antennas using a metasurface formed by uniform square rings[J].IEEE access,2018,6:9420-9429.
    [111]LI T,CHEN Z N.Control of beam direction for substrate-integrated waveguide slot array antenna using metasurface[J].IEEE transactions on antennas and propagation,2018.(in press)
    [112]CHEN K,YANG Z J,FENG Y J,et al.Improving microwave antenna gain and bandwidth with phase compensation metasurface[J].AIP advances,2015,5(6):067152.
    [113]LIU W,CHEN Z N,QING X.Metamaterial-based low-profile broadband mushroom antenna[J].IEEEtransactions on antennas and propagation,2014,62(3):1165-1172.
    [114]LIU W,CHEN Z N,QING X.60-GHz thin broadband high-gain LTCC metamaterial-mushroom antenna array[J].IEEE transactions on antennas and propagation,2014,62(9):4592-4601.
    [115]LIU W,CHEN Z N,QING X.Metamaterial-based low-profile broadband aperture coupled grid-slotted patch antenna[J].IEEE transactions on antennas and propagation,2015,63(7):3325-3329.
    [116]LIU W,QING X,CHEN Z N.Metamaterial-based wideband shorting-wall loaded mushroom array antenna[C]//European Conference on Antennas and Propagation,April 12-17,2015.Lisbon:IEEE,2015:1-4.
    [117]LIU W,CHEN Z N,QING X.Mode analysis and experimental verification of shorting-wall loaded mushroom antenna[C]//Asia-Pacific Microwave Conference,December 5-9,2016.New Delhi:IEEE,2016:1-4.
    [118]PAN Y M,HU P F,ZHANG X Y,et al.A lowprofile high-gain and wideband filtering antenna with metasurface[J].IEEE transactions on antennas and propagation,2016,64(5):2010-2016.
    [119]WU Z,LI L,LI Y,CHEN X.Metasurface superstrate antenna with wideband circular polarization for satellite communication application[J].IEEE antennas and wireless propagation letters,2016,15:374-377.
    [120]HUANG Y J,YANG L,LI J,et al.Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna[J].Applied physics letters,2016,109(5):054101.
    [121]NI X,EMANI N K,KILDISHEV A V,et al.Broadband light bending with plasmonic nanoantennas[J].Science,2012,335(6067):427.
    [122]CHEN X,HUANG L,MHLENBERND H,et al.Dual-polarity plasmonic metalens for visible light[J].Nature communications,2012,3(6):1198.
    [123]ZHANG X,TIAN Z,YUE W,et al.Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J].Advanced materials,2013,25(33):4566-4566.
    [124]NI X,ISHII S,KILDISHEV A V,et al.Ultra-thin,planar,Babinet-inverted plasmonic metalenses[J].Light science&applications,2013,2(4):e72.
    [125]SMITH D R,PADILLA W J,VIER D C,et al.Composite medium with simultaneously negative permeability and permittivity[J].Physical review letters,2000,84(18):4184.
    [126]WONG J P S,SELVANAYAGAM M,ELEFTHER-IADES G V.Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces[J].Photonics and nanostructures-fundamentals and applications,2014,12(4):360-375.
    [127]ABADI S M A M H,BEHDAD N.Design of wideband,FSS-based multibeam antennas using the effective medium approach[J].IEEE transactions on antennas and propagation,2014,62(11):5557-5564.
    [128]GAGNON N,PETOSA A,MCNAMARA D A.Thin microwave phase-shifting surface lens antenna made of square elements[J].Electronics letters,2010,46(5):327-329.
    [129]GAGNON N,PETOSA A,MCNAMARA D A.Thin microwave quasi-transparent phase-shifting surface(PSS)[J].IEEE transactions on antennas and propagation,2010,58(4):1193-1201.
    [130]AL-JOUMAYLY M A,BEHDAD N.Wideband planar microwave lenses using sub-wavelength spatial phase shifters[J].IEEE transactions on antennas and propagation,2011,59(12):4542-4552.
    [131]POZAR D M.Flat lens antenna concept using aperture coupled microstrip patches[J].Electronics letters,1996,32(23):2109-2111.
    [132]RYAN C G M,CHAHARMIR M R,SHAKER J,et al.A wideband transmitarray using dual-resonant double square rings[J].IEEE transactions on antennas and propagation,2010,58(5):1486-1493.
    [133]CHAHARMIR M R,ITTIPIBOON A,SHAKER J.Single-band and dual-band multilayer transmitarray antennas[C]//International Symposium on Antenna Technology and Applied Electromagnetics,July 17-19,2006.Montreal:IEEE,2006:491-494.
    [134]AN W,XU S,YANG F,et al.A double-layer transmitarray antenna using Malta crosses with vias[J].IEEE transactions on antennas and propagation,2016,64(3):1120-1125.
    [135]RAHMATI B,HASSANI H R.Low-profile slot transmitarray antenna[J].IEEE transactions on antennas and propagation,2014,63(1):174-181.
    [136]ABDELRAHMAN A H,ELSHERBENI A Z,YANGF.Transmission phase limit of multilayer frequencyselective surfaces for transmitarray designs[J].IEEEtransactions on antennas and propagation,2014,62(2):690-697.
    [137]LI T,CHEN Z N.Miniaturized metasurface unit cell for microwave metalens antennas[C]//International Conference on Electromagnetics in Advanced Applications,September 11-15,2017.Verona:IEEE,2017:980-983.
    [138]CAI T,WANG G M,LIANG J G,et al.Highperformance transmissive meta-surface for C-/X-band lens antenna application[J].IEEE transactions on antennas and propagation,2017,65(7):3598-3606.
    [139]CHEN Y,ZHENG S,LI Y,et al.A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J].IEEEantennas&wireless propagation letters,2016,15:1156-1158.
    [140]CHUNG K L,CHAIMOOL S.Diamagnetic metasurfaces for performance enhancement of microstrip patch antennas[C]//European Conference on Antennas and Propagation,April 11-15,2011.Rome:IEEE,2011:48-52.
    [141]ZHU H,CHUNG K L,SUN X L,et al.CP metasurfaced antennas excited by LP sources[C]//Antennas and Propagation Society International Symposium,July 8-14,2012.Chicago:IEEE,2012:1-2.
    [142]ZHU H L,CHEUNG S W,CHUNG K L,et al.Linear-to-circular polarization conversion using metasurface[J].IEEE transactions on antennas and propagation,2013,61(9):4615-4623.
    [143]ZHU H L,CHEUNG S W,LIU X H,et al.Design of polarization reconfigurable antenna using metasurface[J].IEEE transactions on antennas and propagation,2014,62(6):2891-2898.
    [144]COSTA F,MONORCHIO A,MANARA G.An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces[J].Applied Computational Electromagnetics Society Journal,2014,29(12):960-976.
    [145]KONSTANTINIDIS K,FERESIDIS A P,HALL PS.Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces[J].IEEEtransactions on antennas and propagation,2014,63(1):423-427.
    [146]LIN F H,CHEN Z N,LIU W,et al.A metamaterialbased broadband circularly polarized aperture-fed gridslotted patch antenna[C]//Asia-Pacific Conference on Antennas and Propagation,June 30-July 3.Kuta:IEEE,2015:353-354.
    [147]COSTA F,LUUKKONEN O,SIMOVSKI C R,et al.TE surface wave resonances on high-impedance surface based antennas:analysis and modeling[J].IEEE transactions on antennas and propagation,2011,59(10):3588-3596.
    [148]PANDI S,BALANIS C A,BIRTCHER C R.Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization[J].IEEE transactions on antennas and propagation,2015,63(7):3016-3024.
    [149]PFEIFFER C,GRBIC A.Planar lens antennas of subwavelength thickness:collimating leaky-waves with metasurfaces[J].IEEE transactions on antennas and propagation,2015,63(7):3248-3253.
    [150]GARBACZ R J.Modal expansions for resonance scattering phenomena[J].Proceedings of the IEEE,1965,53(8):856-864.
    [151]HARRINGTON R F,MAUTZ J R.Theory of characteristic modes for conducting bodies[J].IEEEtransactions on antennas and propagation,1971,19(5):622-628.
    [152]HARRINGTON R F,MAUTZ J R.Computation of characteristic modes for conducting bodies[J].IEEEtransactions on antennas and propagation,1971,19(5):629-639.
    [153]HARRINGTON R,MAUTZ J,CHANG Y.Characteristic modes for dielectric and magnetic bodies[J].IEEE transactions on antennas and propagation,1972,20(2):194-198.
    [154]CHANG Y,HARRINGTON R F.A surface formulation for characteristic modes of material bodies[J].IEEE transactions on antennas and propagation,1974,25(6):789-795.
    [155]CHEN Y,WANG C F.Characteristic modes:Theory and applications in antenna engineering[M].New York:John Wiley&Sons,2015.
    [156]LIN F H,CHEN Z N.Probe-fed broadband lowprofile metasurface antennas using characteristic mode analysis[C]//Asia-Pacific Conference on Antennas and Propagation,October 16-19,2017.Xi’an:IEEE,2017:446-448.
    [157]SANTILLN-HARO D,ANTONINO-DAVIU E,SNCHEZ-ESCUDEROS D,et al.Analysis and design of a metamaterial lens antenna using the theory of characteristic modes[J].International journal of antennas and propagation,2018,2018(3):1-8.
    [158]YANG X,LIU Y,GONG S.Design of wideband omnidirectional antenna with characteristic mode analysis[J].IEEE antennas wireless and propagation letters,2018.(in press)
    [159]ZHAO C,WANG C F.Characteristic mode design of wideband circularly polarized patch antenna consisting of H-shaped unit cells[J].IEEE access,2018.(in press)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700