水平气井井筒气液两相流型预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of Gas-liquid Two-phase Flow Patterns in Horizontal Gas Wells
  • 作者:刘永辉 ; 罗程程 ; 刘通 ; 任桂蓉 ; 王中武
  • 英文作者:LIU Yonghui;LUO Chengcheng;LIU Tong;REN Guirong;WANG Zhongwu;School of Oil & Natural Gas Engineering,Southwest Petroleum University;Research Institute for Engineering Technology,Sinopec Southwest Branch Company;Luliang Oilfield Operation Area,Xinjiang Oilfield Company,PetroChina;
  • 关键词:水平气井 ; 气液两相管流 ; 管斜角 ; 三维流型图 ; BP神经网络
  • 英文关键词:horizontal gas well;;gas-liquid two-phase flow;;pipe angle;;three-dimensional flow pattern map;;BP neural network
  • 中文刊名:XNSY
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:西南石油大学石油与天然气工程学院;中国石化西南油气分公司石油工程技术研究院;中国石油新疆油田陆梁油田作业区;
  • 出版日期:2019-03-25 10:46
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.194
  • 基金:国家自然科学基金(51374181);; “油气藏地质及开发工程”国家重点实验室开发基金项目(PLN1517)
  • 语种:中文;
  • 页:XNSY201903011
  • 页数:6
  • CN:03
  • ISSN:51-1718/TE
  • 分类号:110-115
摘要
准确判断产水水平气井井筒流型是预测其井筒压降、合理制定排水采气方案的关键。水平井沿流向井斜角从90°到0连续变化,目前尚无描述水平井两相流动的统一流型图,只能分别采用描述水平管、倾斜管和垂直管的3个流型图来分段处理,各流型图实验条件差异大;且产水气井日产水量极小,气液比极高,易超出工程常用气液两相管流流型图的坐标值范围,导致其预测结果误差大。为此研制了水平段-倾斜段-垂直段的水平井空气-水两相流动模拟实验装置,考虑产水气井特高气液比的特点开展了7组管斜角641组水平井气水两相管流流型实验,归纳水平气井的5种流型及其典型特征。引用Duns&Ros定义的无因次气液速度准数,增加管斜角为X轴,绘制了描述水平气井气液两相管流的三维流型图,给出了BP神经网络模型预测水平气井井筒流型的方法。川西气田20口水平气井测压数据验证表明,该流型图预测正确率达90%。
        An accurate estimation of the flow pattern of a horizontal gas well that produces water is the key to predicating the pressure drop of the wellbore and establishing a sensible water-drainage production plan. The angle of a horizontal well constantly varies from 90° to 0 according to the flow direction. A unified flow pattern map that describes the two-phase flow of horizontal wells has not yet been discovered. Therefore, three separate flow pattern maps are used to describe the horizontal, slanted, and vertical pipes individually. These maps are obtained under extremely different experimental conditions.In addition, the gas wells may produce extremely low water output. In such cases, the gas-liquid ratio may exceed the valid coordinate range of the commonly used gas-liquid two-phase flow pattern map leading to significant errors in the prediction results. Considering all these drawbacks, this study has developed an air-water two-phase flow simulation experimental device for horizontal, slanted, and vertical pipes. Provided the extremely high gas-liquid ratio of the gas well with water production,this study has conducted a gas-water two-phase flow pattern experiment using 7 slanted pipes and 641 horizontal pipes. It has summarized five flow patterns and the typical characteristics of horizontal gas wells. This work has used the dimensionless gas velocity number defined by Duns and Ros and the pipe inclination angle as the X-axis. A three-dimensional flow pattern map has been constructed to describe the gas-liquid two-phase pipe flow in the horizontal gas well. This study has also proposed a method to predict the flow pattern based on the back propagation neural network model. The pressure measurement results from 20 horizontal gas wells in the gas fields at Western Sichuan indicate that the flow map demonstrates an accuracy of 90%in prediction.
引文
[1] AL_DUAIS M S,YAAKUB A R,YUSOFF N,et al. A novel strategy for speed up training for back propagation algorithm via dynamic adaptive the weight training in artificial neural network[J], Research Journal of Applied Sciences, Engineering and Technology, 2015, 9(3):189-200.doi:10.19026/rjaset.9.1394
    [2] TAITEL Y,BARNEA D,DUKLER A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. Aiche Journal, 1980, 26(3):345-354.doi:10.1002/aic.690260304
    [3] GO VIER G W, AZIZ K. The flow of complex mixtures in pipes[M]. New York:Van Nostrand Reinhold, 1972.
    [4] LIN P Y, HANRATTY T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4):549-563.doi:10.1016/0301-9322(87)90021-8
    [5]李丹,王瑞.水平气液两相管流流型转变实验研究[J].中国石油和化工标准与质量,2013(20):159. doi:10.-3969/j.issn.1673-4076.2013.20.132LI Dan, WANG Rui. Experimental study on flow pattern transition of horizontal gas-liquid two-phase flow[J].China Petroleum and Chemical Standard and Quality,2013(20):159. doi:10.3969/j.issn.1673-4076.2013.20.-132
    [6]李银朋.向上倾斜管道内气液两相流的实验研究[D].大庆:大庆石油学院,2010.LI Yinpeng. Experimental study of gas-liquid two-phase flow in upward inclined pipes[D]. Daqing:Daqing Petroleum Institute, 2010.
    [7]韩洪升,张雪,徐学考,等.倾斜管内两相流流型的实验研究[J].当代化工,2015,44(4):709-710. doi:10.-3969/j.issn.1671-0460.2015.04.015HAN Hongsheng, ZHANG Xue, XU Xuekao, et al. Experimental study on the flow pattern of two-phase flow in inclined pipe[J]. Contemporary Chemical Industry, 2015,44(4):709-710. doi:10.3969/j.issn.1671-0460.2015.04.-015
    [8] GOULD T L. Vertical two-phase steam-water flow in geothermal wells[J]. Journal of Petroleum Technology,1974, 26(8):833-842. doi:10.2118/4961-PA
    [9] BEGGS D H, BRILL J P. A study of two phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973,25(5):607-617. doi:10.2118/4007-PA
    [10] DUNS H Jr, ROS N C J. Vertical flow of gas and liquid mixtures in wells[C]. The 6th World Petroleum Congress,Frankfurt am Main, Germany, 1963.
    [11] HEWITT G F, ROBERTS D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography[R]. Atomic Energy Research Establishment, Harwell,UK, 1969.
    [12] WEISMAN J, KANG S Y. Flow pattern transitions in vertical and upwardly inclined lines[J]. International Journal of Multiphase Flow, 1981, 7(3):271-291. doi:10.1016/-0301-9322(81)90022-7
    [13]高庆华,李天太,赵亚杰,等.井筒气液两相流流动特性模拟试验研究[J].长江大学学报(自科版),2014, 11(14):84-87. doi:10.16772/j.cnki.1673-1409.-2014.14.028GAO Qinghua, LI Tiantai, ZHAO Yajie, et al. Simulated experiment of flow characteristics with gas-liquid twophase flow in wellbore[J]. Journal of Yangtze University(Natural Science Edition), 2014,11(14):84-87. doi:10.-16772/j.cnki.1673-1409.2014.14.028
    [14] VOGL T P, MANGIS J K, RIGLER A K, et al. Accelerating the convergence of the back-propagation method[J].Biological Cybernetics, 1988, 59(4-5):257-263. doi:10.-1007/BF00332914
    [15] ZIPSER D, ANDERSEN R A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons[J]. Nature, 1988,331(6158):679-684. doi:10.1038/331679a0
    [16] YOON K, SHIN C, MARFURT K J. Waveform inversion using time-windowed back propagation[J]. SEG 2003-0690, 2003.doi:10.1190/1.1818027
    [17] MI Y, ISHII M, TSOUKALAS L H. Flow regime identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design, 2001,204(1/3):87-100. doi:10.1016/S0029-5493(00)00325-3
    [18] TENGESDAL J 0,KAYA A S,SARICA C. Flow-pattern transition and hydrodynamic modeling of churn flow[J].SPE Journal, 1999,4(4):342-348. doi:10.2118/57756-PA
    [19] GILL L E, HEWITT G F, LACEY P M C. Sampling probe studies of the gas core in annular two-phase flow-II:studies of the effect of phase flow rates on phase and velocity distribution[J]. Chemical Engineering Science, 1964,19(9):665-682. doi:10.1016/0009-2509(64)85054-5
    [20] GILL L E, HEWITT G F, LACEY P M C. Data on the upwards annular flow of air-water mixtures[J]. Chemical Engineering Science, 1965, 20(2):71-88. doi:10.1016/-0009-2509(65)85001-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700