花球状异质结构复合材料ZnS/ZnO/ZnWO_4多模式光降解与光解水制氢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multimode Photodegradation and Photocatalytic Hydrogen Production of Flower Globular-like Heterostructure Composite ZnS/ZnO/ZnWO_4
  • 作者:田宇 ; 李莉 ; 辛籽潺 ; 张文治 ; 徐英明
  • 英文作者:TIAN Yu;LI Li;XIN Zi-Chan;ZHANG Wen-Zhi;XU Ying-Ming;College of Materials Science and Engineering, Qiqihar University;College of Chemistry and Chemical Engineering, Qiqihar University;
  • 关键词:微波辅助水热法 ; ZnS ; ZnO ; ZnWO_4 ; 光催化 ; 孔雀石绿 ; 光解水
  • 英文关键词:microwave-assisted hydrothermal;;ZnS;;ZnO;;ZnWO_4;;photocatalysis;;malachite green;;water splitting
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:齐齐哈尔大学材料科学与工程学院;齐齐哈尔大学化学与化学工程学院;
  • 出版日期:2019-03-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(No.21376126,21776144);; 黑龙江省教育厅基本科研业务专项项目(No.135209105);; 黑龙江省政府博士后资助经费(No.LBH-Z11108);黑龙江省政府博士后科研启动经费(No.LBH-Q13172)资助
  • 语种:中文;
  • 页:WJHX201903015
  • 页数:12
  • CN:03
  • ISSN:32-1185/O6
  • 分类号:135-146
摘要
通过微波辅助水热两步法制备了复合材料ZnS/ZnO/ZnWO_4,并采用X射线衍射(XRD)、紫外-可见漫反射吸收光谱(UVVis DRS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)以及N_2吸附-脱附等测试手段对其晶相结构、组成、形貌、表面物理化学性质及光吸收性能等进行了表征。结果显示,该复合材料呈现大小均匀的花球状结构,其花球是由立方晶相ZnS纳米颗粒、六方晶相ZnO与单斜晶相ZnWO_4纳米棒构成。微波的极化作用导致复合材料ZnO/ZnWO_4的晶粒尺寸、比表面积和孔体积较单体ZnWO_4明显变大。再次微波辐射复合ZnS后,复合材料ZnS/ZnO/ZnWO_4的晶粒尺寸进一步变大,同时二次微波作用导致其比表面积和孔体积由于花球内部的紧致而变小,但复合材料依旧保持花球状结构。以孔雀石绿为目标降解物,研究了花球状ZnS/ZnO/ZnWO_4增强的多模式光催化降解性能。而光解水制氢实验结果表明,ZnS/ZnO/ZnWO_4复合材料具有优异的产氢能力(376.9μmol·h~(-1)·g~(-1)),是市售P25的246.5倍,其增强的光解水制氢性能与复合材料优异的花球形貌、三元异质结构以及光催化反应中的多途径电子传递有关。
        The effects of microwave-assisted hydrothermal synthesis on the morphology and photocatalytic properties of a flower globular-like heterostructure composite were investigated. By the microwave-assisted hydrothermal two step process, ZnS/ZnO/ZnWO_4 composite was prepared. The crystal structure, composition, morphology, surface physicochemical properties and optical absorption properties were characterized by using X-ray diffraction(XRD),ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), high resolution transmission electron microscope(HRTEM) and N_2 adsorptiondesorption tests. The results showed that the composite exhibited a uniform flower globular-like shape. The flower structure consists of cubic ZnS nanoparticles, hexagonal ZnO and monoclinic ZnWO_4 nanorods. The grain size,specific surface area and pore volume of ZnO/ZnWO_4 composites were larger than those of ZnWO_4 composites due to microwave polarization. Moreover, microwave irradiation compounded ZnS and further increased the grain size of composite ZnS/ZnO/ZnWO_4. However, the specific surface area and pore volume of composite ZnS/ZnO/ZnWO_4 decreased due to the compactness of the inner sphere, but the composite still maintained a flower-like structure. The multimode photocatalytic degradation of malachite green enhanced by flower globular ZnS/ZnO/ZnWO_4 was studied. The experimental results of hydrogen production from photolysis water showed that ZnS/ZnO/ZnWO_4 composites had excellent hydrogen production ability(376.9 μmol·h~(-1)·g~(-1)), which was 246.5 times higher than that of commercial P25. The enhanced hydrogen production performance of the composites is related to the excellent flower globular shape, ternary heterostructure and multi-pathway photoelectron migration in photocatalytic reaction.
引文
[1] Balachandran S, Swaminathan M. J. Phys. Chem. C, 2012,116:26306-26312
    [2] Taekyu L, Vanduc L, Dongyeol L, et al. J. Am. Chem. Soc.,1999,121:1145-1155
    [3] Wu W, Zhang S F, Xiao X H, et al. ACS Appl. Mater.Interfaces, 2012,4(7):3602-3609
    [4] Yu X, Shavel A, An X, et al. J. Am. Chem. Soc., 2014,136(26):9236-9239
    [5] Li X G, Bi W T, Zhang L, et al. Adv. Mater., 2016,28(12):2427-2431
    [6] Zhang P L, Yin S, Sato T. Appl. Catal. B, 2009,89(1):118-122
    [7] Wu H Q, Wang Q Y, Yao Y Z, et al. J. Phys. Chem. C, 2008,112(43):16779-16783
    [8] Hu Y, Liu Y, Qian H S, et al. Langmuir, 2010,26(23):18570-18575
    [9] Guo Y, Wang H S, He C L, et al. Langmuir, 2009,25(8):4678-4684
    [10]Hu Y, Klein B D, Su Y, et al. Nano Lett., 2013,13(11):5026-5032
    [11]Huang G L, Zhu Y F. Mater. Sci. Eng. B, 2007,139(2/3):201-208
    [12]Huang G L, Zhu Y F. J. Phys. Chem. C, 2007,111(32):11952-11958
    [13]Amouzegar Z, Naghizadeh R, Rezaie H R, et al. Ceram. Int.,2015,41(1):1743-1747
    [14]Siriwong P, Thongtem T, Phuruangrat A, et al. CrystEngComm,2010,13(5):1564-1569
    [15]Lin J, Lin J, Zhu Y F. Inorg. Chem., 2007,46(20):8372-8378
    [16]Li H P, Liu J Y, Hou W G, et al. Appl. Catal. B, 2014,160-161(44):89-97
    [17]Wang Y J, Wang Z X, Muhammad S, et al. CrystEngComm,2012,14(15):5065-5070
    [18]Zhao X, Zhu Y F. Environ. Sci. Technol., 2006,40(10):3367-3372
    [19]Sadiq M M J, Shenoyb U S, Bhat D K. RSC Adv., 2016,6(66):61821-61829
    [20]Chang C J, Lin Y G, Weng H T, et al. Appl. Surf. Sci.,2018,451:198-206
    [21]Zhang Y H, Zhang N, Tang Z R, et al. ACS Nano., 2012,6(11):9777-9789
    [22]Yu S H, Liu B, Mo M S, et al. Adv. Funct. Mater., 2003,13(8):639-647
    [23]Dandia A, Parewa V, Jain A K, et al. Green Chem., 2011,13(8):2135-2145
    [24]Todescato F, Chesman A S R, Martucci A, et al. Chem.Mater., 2012,24(11):2117-2126
    [25]Fang Z B, Weng S X, Ye X X, et al. ACS Appl. Mater.Interface, 2015,7(25):13915-13924
    [26]Deng S, Zhang W, Hu Z F, et al. Appl. Phys. A, 2018,124(8):526-533
    [27]Ye Z Y, Kong L Y, Chen F, et al. Optik, 2018,164:345-354
    [28]Chen L, Li J H, Ablikim W, et al. Catal. Lett., 2011,141(12):1859-1864
    [29]Li P, Zhao X, Jia C J, et al. J. Mater. Chem. A, 2013,1(10):3421-3429
    [30]Wang J P, Wang Z Y, Huang B B, et al. ACS Appl. Mater.Interfaces, 2012,4(8):4024-4030
    [31]Li L H, Yu L L, Lin Z Y, et al. ACS Appl. Mater. Interfaces,2016,8(13):8536-8545
    [32]Zhang N, Chen D, Cai B C, et al. Int. J. Hydrogen Energy,2017,42(4):1962-1969
    [33]Xu M, Ye T N, Dai F, et al. ChemSusChem, 2015,8(7):1218-1225
    [34]Bao D, Gao P, Zhu X Y, et al. Chem. Eur. J., 2015,21(36):12728-12734
    [35]Zhang J Q, Li L, Xiao Z X, et al. ACS Sustainable Chem.Eng., 2016,4(4):2037-2046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700