表面等离子共振热电子注入机理及在光催化与光电催化应用中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanistic Understanding of Plasmon-induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation
  • 作者:刘佳 ; 潘容容 ; 张二欢 ; 李岳美 ; 刘佳佳 ; 徐萌 ; 戎宏盼 ; 陈文星 ; 张加涛
  • 英文作者:LIU Jia;PAN Rongrong;ZHANG Erhuan;LI Yuemei;LIU Jiajia;XU Meng;RONG Hongpan;CHEN Wenxing;ZHANG Jiatao;Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications,School of Materials Science and Engineering,Beijing Institute of Technology;
  • 关键词:金属/半导体异质纳米晶 ; 表面等离子共振 ; 光催化 ; 光电催化 ; 热电子注入
  • 英文关键词:metal/semiconductor heteronanocrystals;;surface plasmon resonance;;photocatalysis;;photoelectrochemical catalysis;;hot electron injection
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:北京理工大学材料学院结构可控先进功能材料与绿色应用北京市重点实验室;
  • 出版日期:2018-08-10
  • 出版单位:应用化学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金项目资助(51702016,51631001,91323301,51501010)~~
  • 语种:中文;
  • 页:YYHX201808005
  • 页数:12
  • CN:08
  • ISSN:22-1128/O6
  • 分类号:41-52
摘要
由于金属纳米晶表面等离子共振产生的热电子效应,金属/半导体异质纳米晶的可控合成对于增强半导体光催化与光电催化性能具有显著的促进作用。本综述阐述了热电子产生与驰豫的微观机制,探讨了影响热电子在金属-半导体异质纳米晶中界面传递效率的关键因素及异质界面调控合成的重要性,简要介绍了热电子注入效应在光催化与光电催化制备太阳能燃料研究中的应用进展,分析了目前存在的主要问题并对该领域未来的发展趋势进行了展望。
        Hot electrons derived from the surface plasmon resonance of metallic nanocrystals have been demonstrated to play a promising role in promoting the efficiency of photocatalytic and photoelectrochemical solar-to-fuel generation. In this review,we try to describe the underlying mechanisms of the generation and relaxation process of hot electrons,give a discussion on the key factors that affect the efficiency of hot electron injection from metal to semiconductor,and provide an overview of the research progress on hot electronmediated photocatalytic and photoelectrochemical water splitting. This review also outlines the critical limitations in current studies and sheds light on the possible future developments in this research field.
引文
[1]Ma Y,Wang X L,Jia Y S,et al.Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J].Chem Rev,2014,114(19):9987-10043.
    [2]Chen S S,Takata T,Domen K.Particulate Photocatalyst for Overall Water Splitting[J].Nat Rev Mater,2017,2:17050.
    [3]Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature,1972,238:37-38.
    [4]Linic S,Christopher P,Ingram D B.Plasmonic-Metal Nanostructures for Efficent Conversion of Solar to Chemical Energy[J].Nat Mater,2011,10:911-921.
    [5]Brongersm M L,Halas N J,Nordlander P.Plasmon-Induced Hot Carrier Science and Technology[J].Nat Nanotechnol,2015,10:25-34.
    [6]Wang M Y,Ye M D,Iocozzia J,et al.Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Nobel Metal/Semicondcutor Composites[J].Adv Sci,2016,3(6):1600024.
    [7]Zhang P,Wang T,Gong J L.Mechanistic Understading of the Plasmonic Enhancement for Solar Water Splitting[J].Adv Mater,2015,27(36):5328-5342.
    [8]Jiang R B,Li B X,Fang C H,et al.Metal/Semicondcutor Hybrid Nanostructures for Plasmon-Enhanced Applications[J].Adv Mater,2014,26(31):5274-5309.
    [9]Cushing S K,Li J T,Meng F K,et al.Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor[J].J Am Chem Soc,2012,134(36):15033-15041.
    [10]Ingram D B,Christopher P,Bauer J L,et al.Predictive Model for the Design of Plasmonic Metal/Semicondcutor Composite Photocatalysts[J].ACS Catal,2011,1(10):1441-1447.
    [11]Govorov A O,Zhang H,Gun'ko Y K.Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules[J].J Phys Chem C,2013,117(32):16616-16631.
    [12]SHAN Hangyong,ZU Shuai,FANG Zheyu.Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J].Laser Optoelectron Prog,2017,54:030002.(in Chinese)单杭永,祖帅,方哲宇.表面等离基元热电子超快动力学研究进展[J].激光与光电子学进展,2017,54:030002.
    [13]Smith J G,Faucheaux J A,Jain P K.Plsamon Resonances for Solar Energy Harvesting:A Mechanistic Outlook[J].Nano Today,2015,10(1):67-80.
    [14]Clavero C.Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J].Nat Photon,2014,8:95-103.
    [15]Park J Y,Baker L R,Somorjai G A.Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chmeistry and Catalytic Reaction[J].Chem Rev,2015,115(8):2781-2817.
    [16]Khurgin J B.How to Deal with the Loss in Plasmonics and Metamateirals[J].Nat Nanotechnol,2015,10:2-6.
    [17]Bian Z F,Tachikawa T,Zhang P,et al.Au/Ti O2Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecendented Activity[J].J Am Chem Soc,2014,136(1):458-465.
    [18]Lambright S,Butaeva E,Razgoniaeva N,et al.Enhanced Lifetime of Excitons in Nonepitaxial Au/Cd S Core/Shell Nanocrystals[J].ACS Nano,2014,8(1):352-361.
    [19]Yu S J,Kim Y H,Lee S Y,et al.Hot-Electron-Transfer Enhancement for Efficient Energy Conversion of Visible Light[J].Angew Chem Int Ed,2014,126(42):11203-11207.
    [20]Liu L Q,Li P,Adisak B,et al.Gold Photosensitiezed Sr Ti O3for Visible-Light Water Oxidation Induced by Au Interband Transitions[J].J Mater Chem A,2014,2(25):9875-9882.
    [21]Wu B H,Liu D Y,Mubeen S,et al.Anisotropic Growth of Ti O2onto Gold Nanorods for Plamon-Enhanced Hydrogen Production from Water Reduction[J].J Am Chem Soc,2016,138(4):1114-1117.
    [22]Zhao Q,Ji M W,Qian H M,et al.Controlling Structural Symmerty of Hybrid Nanostructure and Its Effect on Efficient Photocatalytic Hydrogen Evolution[J].Adv Mater,2014,26(9):1387-1392.
    [23]Long R,Mao K K,Gong M,et al.Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction versus Plasmonic Effects[J].Angew Chem Int Ed,2014,53(12):3205-3209.
    [24]Tian Y,Tatsuma T.Mechanisms and Applications of Plasmon-Induced Charge Separation at Ti O2Films Loaded with Gold Nanoparticles[J].J Am Chem Soc,2005,127(20):7632-7637.
    [25]Furube A,Du L C,Hara K,et al.Ultrafast Plasmon-Induced Electron Transfer from Gold Nanorods into Ti O2Nanoparticles[J].J Am Chem Soc,2007,129(48):14852-14853.
    [26]Wu K F,Rodriguez-Cordoba W E,Yang Y,et al.Plasmon-Induced Hot Electron Transfer from the Au Tip to Cd S Rod in Cd S-Au Nanoheterostructures[J].Nano Lett,2013,13(11):5255-5263.
    [27]Liu J,Feng J W,Gui J,et al.Metal@Semiconductor Core-Shell Nanocrystals with Atomically Organized Interfaces for Efficient Hot Electron-Mediated Photocatalysis[J].Nano Energy,2018,48:44-52.
    [28]Xiao J D,Han L L,Luo J,et al.Integration of Plasmonic Effects and Schottky Junction into Metal-Organic Framework Composites:Steering Charge Flow for Enhanced Visible-Light Photocatalysis[J].Angew Chem Int Ed,2018,57(4):1103-1107.
    [29]Wang S Y,Gao Y Y,Miao S,et al.Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts[J].J Am Chem Soc,2017,139(34):11771-11778.
    [30]Bai S,Li X Y,Kong Q,et al.Toward Enhanced Photocatalytic Oxygen Evolution:Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection[J].Adv Mater,2015,27(22):3444-3452.
    [31]Liu G H,Du K,Xu J L,et al.Plasmon-Dominated Photoelectrodes for Solar Water Splitting[J].J Mater Chem A,2017,5(9):4233-4253.
    [32]Yu J G,Dai G P,Huang B B.Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/Ag Cl/Ti O2Nanotube Array[J].J Phys Chem C,2009,113(37):16394-16401.
    [33]Zhang X,Liu Y,Lee S T,et al.Coupling Surface Plasmon Resonance of Gold Nanoparticles with Slow-Photon-Effect of Ti O2Photonic Crystals for Synertistically Enhanced Photoelectrochemical Water Splitting[J].Energy Environ Sci,2014,7(4):1409-1419.
    [34]Zhang C L,Shao M F,Ning F Y,et al.Au Nanoparticles Sensitized Zn O Nanorod@Nanoplatelet Core-Shell Arrays for Enhanced Photoelectrochemical Water Splitting[J].Nano Energy,2015,12:231-239.
    [35]Huang L,Zheng J J,Huang L L,et al.Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core-Shell Hetero-Nanocrystals into Diverse Superstructures[J].Chem Mater,2017,29(5):2355-2363.
    [36]Lee J,Mubeen S,Ji X L,et al.Plasmonic Photoanodes for Solar Water Splitting with Visible Light[J].Nano Lett,2012,12(9):5014-5019.
    [37]Li J T,Cushing S K,Zheng P,et al.Solar Hydrogen Generation by a Cd S-Au-Ti O2Sandwich Array Enhanced with Au Nanoparticle as Electron Realy and Plasmonic Photosensitizer[J].J Am Chem Soc,2014,136(23):8438-8449.
    [38]Wang X T,Liow C H,Qi D P,et al.Programmble Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented Cd S-Au Nanorod Arrays[J].Adv Mater,2014,26(21):3506-3512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700