基于Al/CuO_x复合薄膜半导体桥间隙点火性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Gap Ignition Performances of Semiconductor Bridge Based on Al/CuO_x Multilayer Films
  • 作者:倪德彬 ; 于国强 ; 史胜楠 ; 徐栋 ; 陈利魁 ; 朱雅红 ; 王培勇
  • 英文作者:NI De-bin;YU Guo-qiang;SHI Sheng-nan;XU Dong;CHEN Li-kui;ZHU Ya-hong;WANG Pei-yong;Shanxi Applied Physics and Chemistry Research Institute;
  • 关键词:Al/CuOx ; 复合薄膜 ; 半导体桥(SCB) ; 间隙点火
  • 英文关键词:Al/CuO_x;;multilayer films;;semiconductor bridge(SCB);;gap ignition
  • 中文刊名:HNCL
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:陕西应用物理化学研究所;
  • 出版日期:2018-12-06 09:12
  • 出版单位:含能材料
  • 年:2019
  • 期:v.27;No.160
  • 基金:中国博士后基金(2015M572610)
  • 语种:中文;
  • 页:HNCL201902015
  • 页数:6
  • CN:02
  • ISSN:51-1489/TK
  • 分类号:71-76
摘要
为了提升半导体桥(SCB)的点火能力,尤其是点燃钝感药剂的能力,采用磁控溅射技术将Al/CuO_x复合薄膜与半导体桥相融合,形成含能点火器件,并研究了该含能点火器件的发火感度和点火能力。采用扫描电子显微镜(SEM)、X-射线能谱仪(EDS)、X-射线衍射仪(XRD)研究了Al/CuO_x复合薄膜的微观形貌和组成。结果表明,在溅射过程中氧化铜薄膜主要以黑铜矿(Cu_2~(1+)Cu_2~1+O_3)形式存在;复合薄膜中Al、Cu、O三种元素质量分数分别为28.8%,32.5%和38.7%,且Al与Cu原子比例接近于理论比1:1;差示扫描量热仪(DSC)显示Al/CuO_x复合薄膜放热量约为2175.4J·g~(-1);高速摄影技术测试Al/CuO_x复合薄膜的燃烧速率约为3.0m·s~(-1);兰利法测得该含能点火器件50%发火电压为8.45 V,99.9%发火电压为12.39 V。点火能力实验表明,在点火间隙为4 mm时,该含能器件能够点燃钝感点火药硼-硝酸钾(B/KNO_3)药片,显著提升了半导体桥的点火能力。
        To improve the ignition ability of semiconductor bridge(SCB), especially the ability to ignite insensitive compositions, Al/CuO_x multilayer film was fused and combined with semiconductor bridge by magnetron sputtering technology to form an energetic ignition device and the ignition sensitivity and ignition ability of the energetic ignition device were studied. The micro morphology and composition of Al/CuO_x multilayer films were studied by scanning electron microscopy(SEM), X-ray energy dispersive spectrometer(EDS) and X-ray diffractometer(XRD). Results show that the copper oxide film mainly exists in the form of black copper ore(Cu_2~(1+) Cu_2~(1+) O_3); the mass fractions of Al, Cu and O in the multilayer film are 28.8%, 32.5% and38.7% respectively, and the ratio of Al to Cu atom is close to the theoretical ratio of 1 : 1; the results obtained by differential scanning calorimeter( DSC) show that the quantity of heat release of AI/CuOx multilayer film is about 21 75.4 J·g~(-1). The burning rate of Al/CuO_x multilayer film is measured by high-speed photography is about 3.0 m·s~(-1). The 50% ignition voltage of the energetic ignition device measured by Lanley's method is 8.45 V and 99.9% ignition voltage is 12.39 V. The ignition ability experiment shows that when the ignition gap is 4 mm, the energetic device can ignite the insensitive ignition composition of B/KNO_3 tablets, which significantly improves the ignition ability of the semiconductor bridge.
引文
[1] Benson D A,Larsen M E,Renfund A M,et al. Semiconductorbridge:a plasma generator for the ignition of explosives[J].Journal of Applied Physics,1987,62:1622-1632.
    [2] Martinez‐Tovar B,Foster M C. Titanium semiconductor bridgeigniter[P]. U.S.,20080017063A1,2008.
    [3] Kaili Zhang,Rossi C,Marine P,et al. A nano initiator real‐ized by integrating Al/CuO‐based nanoenergetic materialswith a Au/Pt/Cr microheater[J]. Journal of Microelectrome?chanical Systems,2008,17(4):832-837.
    [4] Taton G,Lagrange D,Conedera V,et al. Micro‐chip initiatorrealized by integrating Al/CuO multilayer nanothermite onpolymeric membrane[J]. Journal of Micromechanics and Mi?croengineering,2013,23(10):105009-105013.
    [5] Rossi C,Kaili Zhang,Estève D,et al. Nanoenergetic materialsfor MEMS:A review[J]. Journal of microelectromechanicalsystems,2007,16(4):919-931.
    [6] Xiang Zhou,Mohsen T,Lu Jian,et al. Nanostructured ener‐getic composites:synthesis,ignition/combustion modeling,and applications[J]. ACS Applied Materials Interfaces,2014,6(5):3058-3074.
    [7] Petrantoni M,Rossi C,Salvagnac L,et al. Multilayered Al/CuO thermite formation by reactive magnetron sputtering:na‐no versus micro[J]. Journal of Applied Physics,2010,108(8):084323-1-084323-5.
    [8] Swati M,Schoenitz M,Edward L D. Control of structural re‐finement and composition in Al‐MoO3nanocomposites pre‐pared by arrested reactive milling[J]. Propellants ExplosivesPyrotechnics. 2006,31(5):382-340.
    [9] Kaili Zhang,Rossi C,Alphonse P,et al. Integrating Al withNiO nano honeycomb to realize an energetic material on sili‐con substrate[J]. Applied Physics A:Materials Science&Pro?cessing,2009,94(4):957-962.
    [10] Thompson C V,Clevenger L A,et al. Self propagating explo‐sive reactions in Al/Ni multilayer thin films[J]. Applied PhysicsLetters,1990,57(12):1262-1264.
    [11] Gavens A J,Heerden D Van,Mann A B,et al. Effect of inter‐mixing on self‐propagating exothermic reactions in Al/Ni nano‐laminate foils[J]. Journal of Applied Physics,2000,87(3):1255-1263.
    [12] Blobaum K J,Reiss M E,Plitzko J M,et al. Deposition andcharacterization of a self‐propagating CuOx/Al thermite reac‐tion in a multilayer foil geometry[J]. Journal of Applied Phys?ics,2003,94(5):2915-2922.
    [13] Adams D P. Reactive multilayers fabricated by vapor deposi‐tion:A critical review[J]. Thin Solid Films, 2015, 576:98-128.
    [14] Blobaum K J,Wagner A J,Plitzko J M,et al. Investigating thereaction path and growth kinetics in CuO/Al multilayer foils[J].Journal of Applied Physics,2003,94(5):2923-2929.
    [15] Manesh NA,Saptarshi B,Ranganathan K. Experimental flamespeed in multi‐layered nano‐energetic materials[J]. Combus?tion and Flame,2010,157:476-480.
    [16] Kyuhyeon L,Dahin K,Jaewon S,et al. Formation of Cu layeron Al nanoparticles during thermite reaction in Al/CuOnanoparticle composites:Investigation of off‐stoichiometry ra‐tio of Al and CuO nanoparticles for maximum pressure change[J]. Combustion and Flame,2015,162(3):3823-3828.
    [17] Kyuhyeon L,Dahin K,DoJoong S,et al. Divide and com‐bust:effect of morphology of CuO nanowires on the combus‐tion rate of Al nanoparticle‐CuO nanowire thermite composites[J]. Science of Advanced Materials,2016,8:185-189.
    [18] DoJoong S,WhiDong K,Seokwon L,et al. Nanothermite ofAl nanoparticles and three‐dimensionally ordered macropo‐rous CuO:mechanistic insight into oxidation during thermitereaction[J]. Combustion and Flame,2018,189:87-91.
    [19] Xiang Zhou,Ruiqi Shen,Yinghua Ye,et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initia‐tor[J].Journal of Applied Physics,2011,110(9):094505-1-094505-6.
    [20]李杰,朱朋,胡博,等. Al/CuO肖特基结换能元芯片的非线性电爆换能特性[J],含能材料,2016,24(3):279-283.LI Jie,ZHU Peng,HU Bo,et al. Nonlinear energy conversionperformance of electrical explosion of schottky barrier struc‐tured Al/CuO transduction chip[J]. Chinese Joural of EnergeticMaterials(Hanneng Cailiao),2016,24(3):279-283.
    [21] Yanjun Yin,Xueming Li,Yuanjie Shu,et al. Fabrication ofelectrophoretically deposited,self‐assembled three‐dimension‐al porous Al/CuO nanothermite films for highly enhanced ener‐gy output[J]. Materials Chemistry and Physics,2017,194:182-187.
    [22] Andréa N,Ludovic S,Vincent B,et al. Fast circuit breakerbased on integration of Al/CuO nanothermites[J]. Sensors andActuators A,2018,273:249-255.
    [23]李勇,王军,高泽志,等.多晶硅与Al/CuO复合薄膜集成的含能点火器件的点火性能[J].含能材料,2016,24(2):182-187.LI Yong,WANG Jun,GAO Ze‐zhi,et al. Ignition performanc‐es of energetic igniters integrated by integrating polysiliconwith Al/CuO multilayer films[J]. Chinese Joural of EnergeticMaterials(Hanneng Cailiao),2016,24(2):182-187.
    [24] Zilong Zheng,Wenchao Zhang,Chunpei Yu,et al. Integra‐tion of the 3DOM Al/Co3O4nanothermite film with a semicon‐ductor bridge to realize a highoutput micro‐energetic igniter[J]. RSC Advances,2018,8:2552-2560.
    [25] Lee J,Kim K,Kwon S. Fabrication and performance evalua‐tion of a micro igniter membrane assembly for MEMS thrusterarray[C]//2008,Proceedings of Power MEMS,161-164.
    [26] Jinhee K,Jean M D,Pierre A,et al. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction[J]. ACS Applied Materials Interfaces,2013,5(3):605-613.
    [27]张蕊,付东晓,白颖伟,等.火工品感度实验用便携式计算装置[J].火工品,2009(1):35-39.ZHANG Rui,FU Dong‐xiao,BAI Ying‐wei,et al. A calculateinstrument for the sensitivity test of initiating explosive device[J]. Initiators and Pyrotechnics,2009(1):35-39.
    [28]袁俊明,张庆明,刘彦.炸药感度测试兰利法与升降法比较研究[J].含能材料,2008,16(2):86-89.YUAN Jun‐ming,ZHANG Qing‐ming,LIU Yan. Comparisonon study LangLi method and up‐and‐down method for sensitiv‐ity testof explosive[J]. Chinese Joural of Energetic Materials(Hanneng Cailiao),2008,16(2):86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700