构造成岩作用研究现状及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Overview of Structural Diagenesis
  • 作者:袁静 ; 俞国鼎 ; 钟剑辉 ; 董志芳 ; 谢君 ; 单康
  • 英文作者:YUAN Jing;YU GuoDing;ZHONG JianHui;DONG ZhiFang;XIE Jun;SHAN Kang;School of Geosciences,China University of Petroleum;Evalution and Detection Technology Laboratory of Marine Resources,Qingdao National Laboratory For Marine Science and Technology;
  • 关键词:构造成岩作用 ; 变形条带 ; 裂缝 ; 成岩流体 ; 储层
  • 英文关键词:structural diagenesis;;deformation bands;;fracture;;diagenetic fluid;;reservoir
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:中国石油大学(华东)地球科学与技术学院;青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室;
  • 出版日期:2018-12-10
  • 出版单位:沉积学报
  • 年:2018
  • 期:v.36
  • 基金:中国石油科技创新基金项目(2016D-5007-0105);; 山东省重大科技创新工程项目(2017CXGC1608)~~
  • 语种:中文;
  • 页:CJXB201806012
  • 页数:13
  • CN:06
  • ISSN:62-1038/P
  • 分类号:122-134
摘要
构造成岩作用(structural diagenesis)是构造地质学与沉积学交叉融合形成的前沿研究领域,主要研究构造作用、构造和非构造成因的变形构造和变形效应与沉积物(岩)成岩变化之间的相互作用。变形构造及变形过程通过影响成岩流体流动对成岩作用非均质性产生重要影响;与变形构造相关的成岩作用研究则有助于揭示储层成岩演化、流体流动以及构造活动时期、期次及速率等重要信息。构造成岩作用提供了构造—成岩格架下探讨储层演化的新思路,在实际工作中应注意这一思路在储层成因与预测、致密化机制及沉积盆地动力学过程等研究方面的应用。碳酸盐岩变形条带相关研究起步较晚,相对较薄弱,未来应加强这方面的研究;同时亟待建立考虑碳酸盐岩在内的新的变形条带分类体系。目前,不同变形构造之间的研究程度不均衡,变形条带与裂缝几乎构成了构造成岩作用研究的主体;与软沉积物变形构造、砂岩脉等变形构造有关的构造成岩作用研究有待强化。变形构造空间分布预测及其对流体流动影响的研究要综合岩芯、露头及数值模拟等多种资料与方法。国内学者就中国中西部盆地深层系构造作用对储层演化的物理影响开展了研究,并取得了重要进展,构造作用对储层化学变化影响的相关研究已经起步;未来应重视运用构造成岩作用思路探究储层演化与分布的动力机制和过程,推进储层成岩动力学过程和沉积盆地动力学研究。
        Structural diagenesis,which is a cross-discipline of structural geology and sedimentology,is a frontier research field; it mainly studies the interaction between the tectonic action and its deformation structure and effect and the diagenesis of the sediments( rock). Deformation structures and processes have an important influence on the diagenesis heterogeneity through influencing the diagenetic fluid flow; the diagenesis research related to the deformation structure can provide people with diagenetic evolution,fluid flow,and period,stage and rate of structure development. Structural diagenesis provides a new idea for researching the reservoir evolution under the structure-diagenetic framework. It should be noted in practical work that this idea should be considered in research including genesis and prediction,densification mechanism of the reservoir,and evolution of sedimentary basins. The new classification system for deformation bands that include carbonates needs to be established urgently; the research related to deformation bands in carbonate rock started relatively late and is relatively weak. Therefore,research in this area should be strengthened in the future. The degree of research between different deformation structures is not balanced. Deformation bands and fractures constitute the main body of diagenesis research; diagenesis research related to deformation structures,such as soft sediment deformation structure and sandstone veins,needs further strengthening. The research concerning spatial distribution prediction of deformation structures and their influence on the fluid flow should be conducted by integration of various data and methods,such as cores,outcrops,and numerical simulations. Domestic scholars have carried out research on the impact of tectonic activity on physical changes of reservoirs in the Midwest Basin and made important progress; the influence of tectonism on reservoir chemical change has started. The dynamic mechanism and process of reservoir evolution and distribution should be explored by using structural diagenesis in the future in order to promote studies of reservoir diagenesis dynamics and sedimentary basin dynamics.
引文
[1]邱小平.构造动力成岩成矿模拟实验成果分析及其地质意义[J].地球化学,1993(3):237-240.[Qiu Xiaoping. Analysis of the Achievements in tectonic dynamo-petrologenic and dynamo-metallogenic simulating experiments and their geological significance[J].Geochimica,1993(3):237-240.]
    [2]刘正宏,徐仲元,王可勇.大青山高级变质岩中复晶石英条带成因的显微构造和流体包裹体证据[J].中国科学(D辑):地球科学,2007,37(4):488-494.[Liu Zhenghong,Xu Zhongyuan,Wang Keyong. Evidence of microstructures and fluid inclusions for the origin of polycrystalline quartz ribbons in high-grade metamorphic rocks in Daqingshan region[J]. Science China(Seri. D):Earth Sciences,2007,37(4):488-494.]
    [3] Laubach S E,Eichhubl P,Hilgers C,et al. Structural diagenesis[J]. Journal of Structural Geology,2010,32(12):1866-1872.
    [4] Fossen H,Schultz R A,Shipton Z K,et al. Deformation bands in sandstone:a review[J]. Journal of the Geological Society,2007,164(4):755-769.
    [5] Ramsay J G. The crack-seal mechanism of rock deformation[J]. Nature,1980,284(5752):135-139.
    [6] Ahlgren S G. The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone[J]. Journal of Structural Geology,2001,23(8):1203-1214.
    [7] Eichhubl P,Taylor W L,Pollard D D,et al. Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire,Nevada—Evidence for the coupling of hydrogeologic,diagenetic,and tectonic processes[J]. Geological Society of America Bulletin,2004,116(9/10):1120-1136.
    [8] Laubach S E,Reed R M,Olson J E,et al. Coevolution of crackseal texture and fracture porosity in sedimentary rocks:cathodoluminescence observations of regional fractures[J]. Journal of Structural Geology,2004,26(5):967-982.
    [9] Anders M H,Laubach S E,Scholz C H. Microfractures:a review[J]. Journal of Structural Geology,2014,69:377-394.
    [10] Kristensen T B,Rotevatn A,Peacock D C P,et al. Structure and flow properties of syn-rift border faults:the interplay between fault damage and fault-related chemical alteration(Dombjerg Fault,Wollaston Forland,NE Greenland)[J]. Journal of Structural Geology,2016,92:99-115.
    [11] Wennberg O P,Casini G,Jahanpanah A,et al. Deformation bands in chalk,examples from the Shetland Group of the Oseberg Field,North Sea,Norway[J]. Journal of Structural Geology,2013,56(7):103-117.
    [12] Cilona A,Baud P,Tondi E,et al. Deformation bands in porous carbonate grainstones:field and laboratory observations[J]. Journal of Structural Geology,2012,45:137-157.
    [13] Milliken K L,Reed R M. Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud,Nankai accretionary prism,IODP Expedition 316[J]. Journal of Structural Geology,2010,32(12):1887-1898.
    [14] Exner U,Grasemann B. Deformation bands in gravels:displacement gradients and heterogeneous strain[J]. Journal of the Geological Society,2010,167(5):905-913.
    [15]寿建峰,朱国华,张惠良.构造侧向挤压与砂岩成岩压实作用:以塔里木盆地为例[J].沉积学报,2003,21(1):90-95.[Shou Jianfeng,Zhu Guohua,Zhang Huiliang. Lateral structure compression and its influence on sandstone diagenesis:A case study from the Tarim Basin[J]. Acta Sedimentologica Sinica,2003,21(1):90-95.]
    [16]郭迎春,庞雄奇,陈冬霞,等.川西坳陷中段须二段致密砂岩储层致密化与相对优质储层发育机制[J].吉林大学学报(地球科学版),2012,42(增刊2):21-32.[Guo Yingchun,Pang Xiongqi,Chen Dongxia,et al. Densification of tight gas sandstones and formation mechanism of relatively high-quality reservoir in the Second Member of the Xujiahe Formation,western Sichuan depression[J]. Journal of Jilin University(Earth Science Edition),2012,42(Suppl.2):21-32.]
    [17] Li Y,Guo S,Wang X,et al. Stratification model of an ultra-deep tight sandstone fracture reservoir under tectonic stress:A case study of a Cretaceous reservoir in the Kuqa foreland thrust belt of the Tarim Basin[J]. Journal of Natural Gas Science and Engineering,2017,45:53-64.
    [18]张荣虎,姚根顺,寿建峰,等.沉积、成岩、构造—体化孔隙度预测模型[J].石油勘探与开发,2011,38(2):145-151.[Zhang Ronghu,Yao Genshun,Shou Jianfeng,et al. An integration porosity forecast model of deposition,diagenesis and structure[J]. Petroleum Exploration&Development,2011,38(2):145-151.]
    [19]袁静,李欣尧,李际,等.库车坳陷迪那2气田古近系砂岩储层孔隙构造—成岩演化[J].地质学报,2017,91(9):2065-2078.[Yuan Jing,Li Xinyao,Li Ji,et al. Tectonic-diagenetic evolution of Paleocene tight sandstone reservoir pores in the DN2 gas field of Kuqa depression[J]. Acta Geologica Sinica,2017,91(9):2065-2078.]
    [20]刘成林,朱筱敏,朱玉新,等.不同构造背景天然气储层成岩作用及孔隙演化特点[J].石油与天然气地质,2005,26(6):746-753.[Liu Chenglin,Zhu Xiaomin,Zhu Yuxin,et al. Characteristics of diagenesis and pore evolution of gas reservoirs formed in different tectonic settings[J]. Oil&Gas Geology,2005,26(6):746-753.]
    [21]巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响:以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报,2015,44(3):514-519.[Gong Lei,Zeng Lianbo,Du Yijing,et al. Influences of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Kuqa foreland basin[J]. Journal of China University of Mining&Technology,2015,44(3):514-519.]
    [22]寿建峰,张惠良,斯春松,等.砂岩动力成岩作用[M].北京:石油工业出版社,2005.[Shou Jianfeng,Zhang Huiliang,Si Chunsong,et al. Dynamic diagenesis of sandstone[M]. Beijing:Petroleum Industry Press,2005.]
    [23]李忠,张丽娟,寿建峰,等.构造应变与砂岩成岩的构造非均质性:以塔里木盆地库车坳陷研究为例[J].岩石学报,2009,25(10):2320-2330.[Li Zhong,Zhang Lijuan,Shou Jianfeng,et al.Structural strain and structural heterogeneity of sandstone diagenesis:A case study for the Kuqa subbasin in the northern Tarim Basin[J]. Acta Petrologica Sinica,2009,25(10):2320-2330.]
    [24]李忠,刘嘉庆.沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J].沉积学报,2009,27(5):837-848.[Li Zhong,Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica,2009,27(5):837-848.]
    [25]张金亮,张鹏辉,谢俊,等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展,2013,28(9):957-967.[Zhang Jinliang,Zhang Penghui,Xie Jun,et al. Diagenesis of clastic reservoirs:advances and prospects[J]. Advances in Earth Science,2013,28(9):957-967.]
    [26]曾联波,朱如凯,高志勇,等.构造成岩作用及其油气地质意义[J].石油科学通报,2016,1(2):191-197.[Zeng Lianbo,Zhu Rukai,Gao Zhiyong,et al. Structural diagenesis and its petroleum geological significance[J]. Petroleum Science Bulletin,2016,1(2):191-197.]
    [27]邬光辉,陈志勇,郭群英.碳酸盐岩变形带特征及其与油气关系:以塔里木盆地下古生界为例[J].大地构造与成矿学,2014,38(3):580-589.[Wu Guanghui,Chen Zhiyong,Guo Qunying. Characteristics of carbonate deformation band and its significance for hydrocarbon exploration:An example from the Lower Paleozoic in the Tarim Basin[J]. Geotectonica et Metallogenia,2014,38(3):580-589.]
    [28]袁静,杨学君,袁凌荣,等.库车坳陷DB气田白垩系砂岩胶结作用及其与构造裂缝关系[J].沉积学报,2015,33(4):754-763.[Yuan Jing,Yang Xuejun,Yuan Lingrong,et al. Cementation and Its relationship with tectonic fractures of Cretaceous sandstones in DB gas field of Kuqa Sub-basin[J]. Acta Sedimentologica Sinica,2015,33(4):754-763.]
    [29] Becker S P,Eichhubl P,Laubach S E,et al. A 48 m.y. history of fracture opening,temperature,and fluid pressure:cretaceous Travis Peak Formation,East Texas Basin[J]. GSA Bulletin,2010,122(7/8):1081-1093.
    [30] Aydin A. Small faults formed as deformation bands in sandstone[J]. Pure and Applied Geophysics,1978,116(4/5):913-930.
    [31] Aydin A,Borja R I,Eichhubl P. Geological and mathematical framework for failure modes in granular rock[J]. Journal of Structural Geology,2006,28(1):83-98.
    [32] Fossen H,Soliva R,Ballas G,et al. A review of deformation bands in reservoir sandstones:geometries,mechanisms and distribution[M]//Ashton M,Dee S J,Wennberg O P. Subseismicscale reservoir deformation. Geological Society,London,Special Publications,2017.
    [33] Exner U,Kaiser J,Gier S. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir(Vienna Basin,Austria)[J]. Marine and Petroleum Geology,2013,43(5):504-515.
    [34] Schueller S,Braathen A,Fossen H,et al. Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones:statistical analysis of field data[J]. Journal of Structural Geology,2013,52:148-162.
    [35] Rustichelli A,Tondi E,Agosta F,et al. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates(Bolognano Formation,Majella Mountain,Italy)[J]. Journal of Structural Geology,2012,37(4):181-199.
    [36] Rotevatn A,Thorsheim E,Bastesen E,et al. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault:implications for deformation mechanisms in different tectonic regimes[J]. Journal of Structural Geology,2016,90(9):27-47.
    [37] Tavani S,Vitale S,Grifa C,et al. Introducing dolomite seams:hybrid compaction-solution bands in dolomitic limestones[J]. Terra Nova,2016,28(3):195-201.
    [38] Ishii E. Microstructure and origin of faults in siliceous mudstone at the Horonobe Underground Research Laboratory site,Japan[J].Journal of Structural Geology,2012,34(1):20-29.
    [39] Busch B,Winkler R,Osivandi K,et al. Evolution of small-scale flow barriers in German Rotliegend siliciclastics[M]//Armitage P J,Butcher A R,Churchill J M,et al. Reservoir quality of clastic and carbonate rocks:analysis,modelling and prediction. Geological Society,London,Special Publications,2015.
    [40] Busch B,Hilgers C,Gronen L,et al. Cementation and structural diagenesis of fluvio-aeolian Rotliegend sandstones,northern England[J]. Journal of the Geological Society,2017,174(5):855-868.
    [41] Lommatzsch M,Exner U,Gier S,et al. Dilatant shear band formation and diagenesis in calcareous,arkosic sandstones,Vienna Basin(Austria)[J]. Marine and Petroleum Geology,2015,62(4):144-160.
    [42] Khan I,Ahmad S,Arif M,et al. Impact of diagenetic and depositional fabric on reservoir quality; a synthesis from Late Cretaceous and Early Paleocene sandstones in Eastern Sulaiman Range,Pakistan[J]. Arabian Journal of Geosciences,2016,9:388.
    [43] Tindall S E. Jointed deformation bands may not compartmentalize reservoirs[J]. AAPG Bulletin,2006,90(2):177-192.
    [44]付晓飞,肖建华,孟令东.断裂在纯净砂岩中的变形机制及断裂带内部结构[J].吉林大学学报(地球科学版),2014,44(1):25-37.[Fu Xiaofei,Xiao Jianhua,Meng Lingdong. Fault deformation mechanisms and internal structure characteristics of fault zone in pure sandstone[J]. Journal of Jilin University(Earth Science Edition),2014,44(1):25-37.]
    [45] Parnell J,Watt G R,Middleton D,et al. Deformation band control on hydrocarbon migration[J]. Journal of Sedimentary Research,2004,74(4):552-560.
    [46] Fossen H,Bale A. Deformation bands and their influence on fluid flow[J]. AAPG Bulletin,2007,91(12):1685-1700.
    [47] Rotevatn A,Sandve T H,Keilegavlen E,et al. Deformation bands and their impact on fluid flow in sandstone reservoirs:the role of natural thickness variations[J]. Geofluids,2013,13(3):359-371.
    [48] Rotevatn A,Fossmark H,Bastesen E,et al. Do deformation bands matter for flow? Insights from permeability measurements and flow simulations in porous carbonate rocks[J]. Petroleum Geoscience,2016,23(1):104-119.
    [49] Tindall S E. Simple calculations of fluid flow across jointed cataclastic deformation bands[J]. Marine and Petroleum Geology,2014,57(11):152-159.
    [50] Onasch C M,Farver J R,Dunne W M. The role of dilation and cementation in the formation of cataclasite in low temperature deformation of well cemented quartz-rich rocks[J]. Journal of Structural Geology,2010,32(12):1912-1922.
    [51] Parry W T,Chan M A,Beitler B. Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone[J]. AAPG Bulletin,2004,88(2):175-191.
    [52] Segall P. Formation and growth of extensional fracture sets[J].GSA Bulletin,1984,95(4):454-462.
    [53]周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社,1998. 39-43,78-88.[Zhou Wen. Evaluation methods of fracture reservoir in oil and gas pool[M]. Chengdu:Sichuan Science and Technology Press,1988:39-43,78-88.]
    [54]袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质,2017,38(5):840-850.[Yuan Jing,Cao Yu,Li Ji,et al. Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa depression,Tarim Basin[J]. Oil&Gas Geology,2017,38(5):840-850.]
    [55]王改云,刘金萍,简晓玲,等.北黄海盆地下白垩统致密砂岩储层特征及成因[J].地球科学,2016,41(3):523-532.[Wang Gaiyun,Liu Jinping,Jian Xiaoling,et al. Characteristics and genetic mechanism of tight sandstone reservoirs of Lower Cretaceous in North Yellow Sea Basin[J]. Earth Science,2016,41(3):523-532.]
    [56]王建民,张三.特低渗砂岩储集层孔隙结构差异与低电阻率油层成因:以鄂尔多斯盆地中部烟雾峁区块为例[J].石油勘探与开发,2018,45(2):1-8.[Wang Jianmin,Zhang San. Pore structure differences of the extra-low permeability sandstone reservoirs and the causes of low resistivity oil layers:A case study of Block Yanwumao in the middle of Ordos Basin,NW China[J].Petroleum Exploration&Development,2018,45(2):1-8.]
    [57]谢传礼.长庆气田奥陶系马五段碳酸盐岩裂缝发育程度与气藏关系研究[J].天然气勘探与开发,2005,28(3):8-13.[Xie Chuanli. Relationships between fracture development and gas reservoirs in Member Ma 5 of Ordovician carbonate formation,Changqing gas filed[J]. Natural Gas Exploration and Development,2005,28(3):8-13.]
    [58]何伶,赵伦,李建新,等.碳酸盐岩储集层复杂孔渗关系及影响因素:以滨里海盆地台地相为例[J].石油勘探与开发,2014,41(2):206-214.[He Ling,Zhao Lun,Li Jianxin,et al. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors:A case of platform facies in PreCaspian Basin[J]. Petroleum Exploration&Development,2014,41(2):206-214.]
    [59]王珂,张惠良,张荣虎,等.超深层致密砂岩储层构造裂缝特征及影响因素:以塔里木盆地克深2气田为例[J].石油学报,2016,37(6):715-727,742.[Wang Ke,Zhang Huiliang,Zhang Ronghu,et al. Characteristics and influencing factors of ultra-deep tight sandstone reservoir structural fracture:A case study of Keshen-2 gas field,Tarim Basin[J]. Acta Petrolei Sinica,2016,37(6):715-727,742.]
    [60] Lavenu A P C,Lamarche J,Gallois A,et al. Tectonic versus diagenetic origin of fractures in a naturally fractured carbonate reservoir analog(Nerthe anticline,Southeastern France)[J]. AAPG Bulletin,2013,97(12):2207-2232.
    [61]丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.[Ding Wenlong,Wang Xinghua,Hu Qiujia,et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science,2015,30(7):737-750.]
    [62] Feng G,Kang Y,Meng T,et al. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone[J]. Rock Mechanics and Rock Engineering,2017,50(8):2007-2019.
    [63] Parsons R W. Permeability of idealized fractured rock[J]. Society of Petroleum Engineers Journal,1966,6(2):126-136.
    [64] Laubach S E,Ward M E. Diagenesis in porosity evolution of opening-mode fractures,Middle Triassic to Lower Jurassic La Boca Formation,NE Mexico[J]. Tectonophysics,2006,419(1/2/3/4):75-97.
    [65] Liu W Q,Manga M. Changes in permeability caused by dynamic stresses in fractured sandstone[J]. Geophysical Research Letters,2009,36(20):L20307.
    [66] Gong J,Rossen W R. Modeling flow in naturally fractured reservoirs:effect of fracture aperture distribution on dominant sub-network for flow[J]. Petroleum Science,2017,14(1):138-154.
    [67] Laubach S E,Olson J E,Gale J F W. Are open fractures necessarily aligned with maximum horizontal stress?[J]. Earth and Planetary Science Letters,2004,222(1):191-195.
    [68] Wennberg O P,Casini G,Jonoud S,et al. The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow:a discussion[J]. Petroleum Geoscience,2016,22(1):91-104.
    [69] Wilkinson M,Darby D,Haszeldine R S,et al. Secondary porosity generation during deep burial associated with overpressure leak-off:Fulmar formation,United Kingdom Central Graben[J]. AAPG Bulletin,1997,81(5):803-813.
    [70] Yuan G H,Cao Y C,Gluyas J,et al. Feldspar dissolution,authigenic clays,and quartz cements in open and closed sandstone geochemical systems during diagenesis:typical examples from two sags in Bohai Bay Basin,East China[J]. AAPG Bulletin,2015,99(11):2121-2154.
    [71] Guidry S A,Grasmueck M,Carpenter D G,et al. Karst and early fracture networks in Carbonates,Turks and Caicos Islands,British West Indies[J]. Journal of Sedimentary Research,2007,77(6):508-524.
    [72] Emmanuel S,Berkowitz B. Effects of pore-size controlled solubility on reactive transport in heterogeneous rock[J]. Geophysical Research Letters,2007,34(6):L06404.
    [73] de Graaf S,Reijmer J J G,Bertotti G V,et al. Fracturing and calcite cementation controlling fluid flow in the shallow-water carbonates of the Jandaíra Formation,Brazil[J]. Marine and Petroleum Geology,2017,80(2):382-393.
    [74] Olson J E,Laubach S E,Lander R H. Combining diagenesis and mechanics to quantify fracture aperture distributions and fracture pattern permeability[M]//Lonergan L,Jolly R J H,Rawnsley K,et al. Fractured reservoirs. Geological Society,London,Special Publications,2007,270(1):101-116.
    [75] Gale J F W,Lander R H,Reed R M,et al. Modeling fracture porosity evolution in dolostone[J]. Journal of Structural Geology,2010,32(9):1201-1211.
    [76] Paganoni M,Al Harthi A,Morad D,et al. Impact of stylolitization on diagenesis of a lower cretaceous carbonate reservoir from a giant oilfield,Abu Dhabi,United Arab Emirates[J]. Sedimentary Geology,2016,335:70-92.
    [77] Sirat M,Al-Aasm I S,Morad S,et al. Saddle Dolomite and calcite cements as records of fluid flow during basin evolution:Paleogene Carbonates,United Arab Emirates[J]. Marine and Petroleum Geology,2016,74:71-91.
    [78]王琪,郝乐伟,陈国俊,等.白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理[J].石油学报,2010,31(4):553-558.[Wang Qi,Hao Lewei,Chen Guojun,et al. Forming mechanism of carbonate cements in siliciclastic sandstone of Zhuhai Formation in Baiyun sag[J]. Acta Petrolei Sinica,2010,31(4):553-558.]
    [79] Fricke H C,Wickham S M,O'Neil J R. Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex,Nevada[J]. Contributions to Mineralogy and Petrology,1992,111(2):203-221.
    [80] Denny A C,Kozdon R,Kitajima K,et al. Isotopically zoned carbonate cements in Early Paleozoic sandstones of the Illinois Basin:δ18O andδ13C records of burial and fluid flow[J]. Sedimentary Geology,2017,361:93-110.
    [81]黄思静,兰叶芳,黄可可,等.四川盆地西部中二叠统栖霞组晶洞充填物特征与热液活动记录[J].岩石学报,2014,30(3):687-698.[Huang Sijing,Lan Yefang,Huang Keke,et al. Vug fillings and records of hydrothermal activity in the Middle Permian Qixia Formation,western Sichuan Basin[J]. Acta Petrologica Sinica,2014,30(3):687-698.]
    [82]蔡春芳,赵龙.热化学硫酸盐还原作用及其对油气与储集层的改造作用:进展与问题[J].矿物岩石地球化学通报,2016,35(5):851-859.[Cai Chunfang,Zhao Long. Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality:advances and problems[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(5):851-859.]
    [83]李继岩,王永诗,刘传虎,等.热液流体活动及其对碳酸盐岩储集层改造定量评价:以渤海湾盆地东营凹陷西部下古生界为例[J].石油勘探与开发,2016,43(3):359-366.[Li Jiyan,Wang Yongshi,Liu Chuanhu,et al. Hydrothermal fluid activity and the quantitative evaluation of its impact on carbonate reservoirs:A case study of the Lower Paleozoic in the west of Dongying sag,Bohai Bay Basin,East China[J]. Petroleum Exploration&Development,2016,43(3):359-366.]
    [84] Dolníˇcek Z,Kropáˇc K,JaníˇckováK,et al. Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit,Outer Western Carpathians,Czech Republic:Petroleum-bearing vein mineralization from the Stˇríbrník site[J]. Marine and Petroleum Geology,2012,37(1):27-40.
    [85]单秀琴,张宝民,张静,等.古流体恢复及在储集层形成机理研究中的应用:以塔里木盆地奥陶系为例[J].石油勘探与开发,2015,42(3):274-282.[Shan Xiuqin,Zhang Baomin,Zhang Jing,et al. Paleofluid restoration and its application in studies of reservoir forming:A case study of the Ordovician in Tarim Basin,NW China[J]. Petroleum Exploration&Development,2015,42(3):274-282.]
    [86] Vandeginste V,Swennen R,Allaeys M,et al. Challenges of structural diagenesis in foreland fold-and-thrust belts:A case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary[J]. Marine and Petroleum Geology,2012,35(1):235-251.
    [87] Matonti C,Guglielmi Y,Viseur S,et al. P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates[J]. Tectonophysics,2017,705(5):80-92.
    [88] Fossen H. Deformation bands formed during soft-sediment deformation:observations from SE Utah[J]. Marine and Petroleum Geology,2010,27(1):215-222.
    [89]balos B,Elorza J. Structural diagenesis of siderite layers in black shales(Albian Black Flysch,Northern Spain)[J]. The Journal of Geology,2012,120(4):405-429.
    [90] Ravier E,Guiraud M,Vennin E,et al. Micro-to macro-scale internal structures,diagenesis and petrophysical evolution of injectite networks in the Vocontian Basin(France):implications for fluid flow[J]. Marine and Petroleum Geology,2015,64(11):125-151.
    [91]朱东亚,胡文瑄,张学丰,等.塔河油田奥陶系灰岩埋藏溶蚀作用特征[J].石油学报,2007,28(5):57-62.[Zhu Dongya,Hu Wenxuan,Zhang Xuefeng,et al. Characteristics of burial dissolution in the Ordovician limestone of Tahe oilfield[J]. Acta Petrolei Sinica,2007,28(5):57-62.]
    [92]郭沫贞,徐洋,寿建峰,等.准噶尔盆地西北缘二叠系碎屑岩次生孔隙发育控制因素[J].沉积学报,2017,35(2):330-342.[Guo Mozhen,Xu Yang,Shou Jianfeng,et al. Controlling factors of secondary pore development and petroleum exploration significance of Permian clastic rocks in northwest margin of Junggar Basin[J]. Acta Sedimentologica Sinica,2017,35(2):330-342.]
    [93]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用:以鄂尔多斯盆地三叠系延长组为例[J].地球科学——中国地质大学学报,2003,28(4):419-424.[Huang Sijing,Wu Wenhui,Liu Jie,et al. Generation of secondary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Ordos Basin[J].Earth Science-Journal of China University of Geosciences,2003,28(4):419-424.]
    [94]张文才,李贺,李会军,等.南堡凹陷高柳地区深层次生孔隙成因及分布特征[J].石油勘探与开发,2008,35(3):308-312.[Zhang Wencai,Li He,Li Huijun,et al. Genesis and distribution of secondary porosity in the deep horizon of Gaoliu area,Nanpu sag[J]. Petroleum Exploration&Development,2008,35(3):308-312.]
    [95]赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.[Zhao Wenzhi,Shen Anjiang,Hu Suyun,et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration&Development,2012,39(1):1-12.]
    [96]李克永,李文厚,张东阳,等.鄂尔多斯盆地安塞油田长10优质储层特征[J].地质通报,2013,32(9):1453-1460.[Li Keyong,Li Wenhou,Zhang Dongyang,et al. An analysis of favorable reservoir characteristics of Chang 10 Formation in the Ansai oilfield,Ordos Basin[J]. Geological Bulletin of China,2013,32(9):1453-1460]
    [97]樊生利,童崇光.四川二叠系碳酸盐岩裂缝系统成因模式探讨[J].石油实验地质,1995,17(4):343-350.[Fan Shengli,Tong Chongguang. A discussion on the genetic model of crack system in the Permian carbonate rocks of Sichuan province[J]. Experimental Petroleum Geology,1995,17(4):343-350.]
    [98]曹中宏,张红臣,刘国勇,等.南堡凹陷碳酸盐岩优质储层发育主控因素与分布预测[J].石油与天然气地质,2015,36(1):103-110.[Cao Zhonghong,Zhang Hongchen,Liu Guoyong,et al.Main control factors and distribution prediction of high-quality carbonate reservoirs in the Nanpu sag,Bohai Bay Basin[J]. Oil&Gas Geology,2015,36(1):103-110.]
    [99]曲长伟,林春明,蔡明俊,等.渤海湾盆地北塘凹陷古近系沙河街组三段白云岩储层特征[J].地质学报,2014,88(8):1588-1602.[Qu Changwei,Lin Chunming,Cai Mingjun,et al. Characteristics of dolostone reservoir in Sha 3 group from Palaeogene Shahejie Formation in Beitang sag,Bohaiwan Basin[J]. Acta Geologica Sinica,2014,88(8):1588-1602.]
    [100]高志勇,马建英,崔京钢,等.埋藏(机械)压实—侧向挤压地质过程下深层储层孔隙演化与预测模型[J].沉积学报,2018,36(1):176-187.[Gao Zhiyong,Ma Jianying,Cui Jinggang,et al. Deep reservoir pore evolution model of a geological process from burial compaction to lateral extrusion[J]. Acta Sedimentologica Sinica,2018,36(1):176-187.]
    [101]冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价:埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展,2018,33(3):305-320.[Feng Jiarui,Gao Zhiyong,Cui Jinggang,et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa depression:Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science,2018,33(3):305-320.]
    [102]王俊鹏,张惠良,张荣虎,等.裂缝发育对超深层致密砂岩储层的改造作用:以塔里木盆地库车坳陷克深气田为例[J].石油与天然气地质,2018,39(1):77-88.[Wang Junpeng,Zhang Huiliang,Zhang Ronghu,et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures:A case study of Keshen gas field in Kuqa depression,Tarim Basin[J]. Oil&Gas Geology,2018,39(1):77-88.]
    [103]冯明友,郑江,刘田,等.川北地区寒武系筇竹寺组钙质结核裂缝充填物特征及指示意义[J].地质论评,2018,64(3):711-722.[Feng Mingyou,Zheng Jiang,Liu Tian,et al. Characteristics and implications of fracture-filling in carbonate concretions from the Lower Cambrian Qiongzhusi Formation,northern Sichuan[J]. Geological Review,2018,64(3):711-722.]
    [104]韩登林,赵睿哲,李忠,等.不同动力学机制共同制约下的储层压实效应特征:以塔里木盆地库车坳陷白垩系储层研究为例[J].地质科学,2015,50(1):241-248.[Han Denglin,Zhao Ruizhe,Li Zhong,et al. The characteristic of diagenetic compaction induced by multiform geodynamic mechanisms in reservoir:An example from Cretaceous sandstone reservoir in Kuqa depression,Tarim Basin[J]. Chinese Journal of Geology,2015,50(1):241-248.]
    [105]柳广弟,王雅星.库车坳陷纵向压力结构与异常高压形成机理[J].天然气工业,2006,26(9):29-31.[Liu Guangdi,Wang Yaxing. Vertical pressure structure and genetic mechanism of overpressure in Kuqa depression,the Tarim Basin[J]. Natural Gas Industry,2006,26(9):29-31.]
    [106] Yang R,He S,Li T Y,et al. Origin of over-pressure in clastic rocks in Yuanba area,northeast Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,30:90-105.
    [107]刘震,孙迪,李潍莲,等.沉积盆地地层孔隙动力学研究进展[J].石油学报,2016,37(10):1193-1215.[Liu Zhen,Sun Di,Li Weilian,et al. Advances in research on stratigraphic porodynamics of sedimentary basins[J]. Acta Petrolei Sinica,2016,37(10):1193-1215.]
    [108] Nguyen B T T,Jones S J,Goulty N R,et al. The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the central Graben,North Sea[J]. AAPG Bulletin,2013,97(8):1273-1302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700