基于光学表面波的折射率传感成像技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Refractive Index Sensing Imaging Technology Based on Optical Surface Wave
  • 作者:张崇磊 ; 辛自强 ; 闵长俊 ; 袁小聪
  • 英文作者:Zhang Chonglei;Xin Ziqiang;Min Changjun;Yuan Xiaocong;Nanophotonics Research Center,Shenzhen Key Laboratory of Micro-Scale Optical,Information Technology,Shenzhen University;
  • 关键词:物理光学 ; 光学表面波 ; 传感成像 ; 表面等离子体共振 ; 石墨烯 ; 无标记显微成像
  • 英文关键词:physical optics;;optical surface wave;;sensor imaging;;surface plasmon resonance;;graphene;;label-free imaging
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:深圳大学纳米光子学研究中心深圳市微尺度光信息技术重点实验室;
  • 出版日期:2018-11-13 10:08
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家自然科学基金(61427819,61422506,61605118);; 国家重点研发计划(2016YFC0102402);; 国家重点基础研究发展计划(973计划)(2015CB352004);; 深圳市科技创新委员会基础研究项目(JCYJ20160520161206020);; 广东省“珠江人才项目计划”领军人才项目(00201505)
  • 语种:中文;
  • 页:GXXB201901010
  • 页数:16
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:150-165
摘要
从表面波的原理、测量技术分类及关键性技术等多方面进行论述,概括了基于全内反射、表面等离子体共振、石墨烯等多种光学表面波的折射率传感的历史发展,进一步探讨了表面波折射率传感成像的技术优点。研究表明表面波传感成像作为一种高精度定量化的无标记显微成像技术,在医学光学精准诊疗方面具有重要价值。
        The principle of surface wave, classification of measurement technology and key technology are discussed. The historical developments of refractive index sensing based on total internal reflection, surface plasmon resonance, graphene and other optical surface waves is summarized. The technical advantages of surface wave refractive index sensing imaging are further discussed. The research results show that surface wave sensing imaging, as a high-precision quantitative label-free microscopic imaging technology, has important values in the accurate diagnosis and treatment of medical optics.
引文
[1] Sardar D K,Levy L B. Optical properties of whole blood[J]. Lasers in Medical Science, 1998, 13(2):106-111.
    [2] Heinemann H M. Measurement of the refractive index and dispersion of an unpolished sample on an abbe refractometer[J]. Applied Optics, 1970, 9(11):2586-2587.
    [3] Lai J C, Zhang Y Y, Li Z H, et al. Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry[J]. Applied Optics, 2010, 49(16):3235-3238.
    [4] Meeten G H, North A N, Willmouth F M. Errors in critical-angle measurement of refractive index of optically absorbing materials[J]. Journal of Physics E:Scientific Instruments, 1984, 17(8):642-643.
    [5] Anderson R E, Lightman A J. Measurements of the refractive-index variations with temperature of a photomonomer[J]. Applied Optics, 1991, 30(27):3792-3793.
    [6] Zhang C P, Song Q W, Gross R B, et al.Determination of the refractive index of a bacteriorhodopsin film[J]. Optics Letters, 1994, 19(18):1409-1411.
    [7] Mohammadi M. Colloidal refractometry:meaning and measurement of refractive index for dispersions;the science that time forgot[J]. Advances in Colloid and Interface Science, 1995, 62(1):17-29.
    [8] Meeten G H, North A N. Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle[J]. Measurement Science and Technology, 1995, 6(2):214-221.
    [9] Li H, Xie S S. Measurement method of the refractive index of biotissue by total internal reflection[J]. Applied Optics, 1996, 35(10):1793-1795.
    [10] Li H, Xie S S, Qiu Y S. Using tile focused light to determine the refractive index of materials by total internal reflection[J]. Applied Laser, 1996, 16(6):258-260.李晖,谢树森,邱怡申.会聚光全反射法测量物质折射率[J].应用激光,1996, 16(6):258-260.
    [11] Raty J A, Peiponen K E. Reflectance study of milk in the UV-visible range[J]. Applied Spectroscopy,1999, 53(9):1123-1127.
    [12] Lai J C, Li Z H, Wang C Y, et al.Experimental measurement of the refractive index of biological tissues by total internal reflection[J]. Applied Optics, 2005, 44(10):1845-1849.
    [13] McClimans M, Laplante C, Bonner D, et al. Real-time differential refractometry without interferometry at a sensitivity level of 10~(-6)[J].Applied Optics, 2006, 45(25):6477-6486.
    [14] Jin Y L, Chen J Y, Xu L,et al. Refractive index measurement for biomaterial samples by total internal reflection[J]. Physics in Medicine and Biology, 2006, 51(20):N371-N379.
    [15] Ye Q, Wang J, Deng Z C, et al. Measurement of the complex refractive index of tissue-mimicking phantoms and biotissue by extended differential total reflection method[J]. Journal of Biomedical Optics,2011, 16(9):097001.
    [16] Tearney G J, Brezinski M E, Bouma B E, et al.Determination of the refractive index of highly scattering human tissue by optical coherence tomography[J]. Optics Letters, 1995, 20(21):2258-2260.
    [17] Zvyagin A V,Dilusha Silva K K M B D, Alexandrov S A, et al. Refractive index tomography of turbid media by bifocal optical coherence refractometry[J].Optics Express, 2003, 11(25):3503-3517.
    [18] Alexandrov S A,Zvyagin A V,Dilusha Silva K K MB, et al. Bifocal optical coherenc refractometry of turbid media[J]. Optics Letters, 2003, 28(2):117-119.
    [19] Zysk A M, Marks D L, Liu D Y, et al. Needlebased reflection refractometry of scattering samples using coherence-gated detection[J]. Optics Express, 2007, 15(8):4787-4794.
    [20] Kim S, Na J, Kim M J, et al. Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics[J]. Optics Express, 2008, 16(8):5516-5526.
    [21] Wang Z. Tissue refractive index as marker of disease[J]. Journal of Biomedical Optics, 2011, 16(11):116017.
    [22] Binding J, Ben Arous J, Leger J F, et al. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy[J]. Optics Express,2011, 19(6):4833-4847.
    [23] Jonsson U, Fagerstam L, Ivarsson B, et al. Realtime biospecific interaction analysis using surface plasmon resonance and a sensor chip technology[J].Biotechniques, 1991, 11(5):620-627.
    [24] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J].Sensors and Actuators B:Chemical, 1993, 12(3):213-220.
    [25] Homola J, Yee S S, Gauglitz G. Surface plasmonresonance sensors:review[J]. Sensors and Actuators B:Chemical, 1999, 54(1/2):3-15.
    [26] Homola J, Piliarik M. Surface plasmori resonance(SPR)sensors[M]//Homola J, Piliarik M. eds.Springer Series on Chemical Sensors and Biosensors.Berlin, Heidelberg:Springer, 2006:45-67.
    [27] Monzón-Hernandez D, Villatoro J. High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor[J].Sensors and Actuators B:Chemical, 2006, 115(1):227-231.
    [28] Cronin-Golomb M. Photorefractive surface waves[J]. Optics Letters, 1995, 20(20):2075-2077.
    [29] Garcia Quirino G S, Sanchez-Mondragon J J,Stepanov S. Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity[J]. Physical Review A, 1995, 51(2):1571.
    [30] Zhang T H, Ren X K, Wang B H, et al. Surface waves with photorefractive nonlinearity[J]. Physical Review A, 2007, 76(1):013827.
    [31] Zhang T H, Ren X K, Wang B H, et al. Modes of photorefractive surface waves[J]. Journal of Modern Optics, 2007, 54(10):1445-1452.
    [32] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059.
    [33] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486.
    [34] Sinibaldi A, Danz N, Descrovi E, et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors[J].Sensors and Actuators B:Chemical, 2012, 174:292-298.
    [35] Paeder V, Musi V, Hvozdara L, et al. Detection of protein aggregation with a Bloch surface wave based sensor[J]. Sensors and Actuators B:Chemical,2011, 157(1):260-264.
    [36] Sinibaldi A, Fieramosca A, Rizzo R, et al.Combining label-free and fluorescence operation of Bloch surface wave optical sensors[J]. Optics Letters, 2014, 39(10):2947-2950.
    [37] Snyder A W, Love J D. Goos-Hanchen shift[J].Applied Optics, 1976, 15(1):236-238.
    [38] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Fur Physik a Hadrons and Nuclei, 1968, 216(4):398-410.
    [39] Kretschmann E, Raether H. Notizen:radiative decay of non radiative surface plasmons excited bylight[J]. Zeitschrift Für Naturforschung a, 1968,23(12):2135-2136.
    [40] Sarid D. Long-range surface-plasma waves on very thin metal films[J]. Physical Review Letters, 1981,47(26):1927-1930.
    [41] Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Physical Review Letters, 1996, 77(9):1889.
    [42] Hornauer D, Kapitza H, Raether H. The dispersion relation of surface plasmons on rough surfaces[J].Journal of Physics D:Applied Physics, 1974, 7(9):L100-L102.
    [43] Harris R D, Wilkinson J S. Waveguide surface plasmon resonance sensors[J]. Sensors and Actuators B:Chemical, 1995, 29(1/2/3):261-267.
    [44] Nash D J, Cotter N P K, Wood E L, et al.Examination of the+1,-1 surface plasmon minigap on a gold grating[J]. Journal of Modern Optics,1995, 42(1):243-248.
    [45] Kano H, Mizuguchi S, Kawata S. Excitation of surface-plasmon polaritons by a focused laser beam[J]. Journal of the Optical Society of America B,1998, 15(4):1381-1386.
    [46] Tan P S, Yuan X C, Yuan G H, et al. Highresolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices[J]. Applied Physics Letters,2010,97(24):241109.
    [47] Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Applied Physics Letters, 2016, 108(20):201601.
    [48] Wei F F, Liu Z W. Plasmonic structured illumination microscopy[J]. Nano Letters, 2010,10(7):2531-2536.
    [49] Zhang X,Liu Z W. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441.
    [50] Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819):1686-1686.
    [51] Bozhevolnyi S I, Volkov V S, Devaux E, et al.Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083):508-511.
    [52] Liu Z W, Wei Q H, Zhang X. Surface plasmon interference nanolithography[J]. Nano Letters,2005, 5(5):957-961.
    [53] Yao J, Liu Z, Liu Y, et al. Optical negativerefraction in bulk metamaterials of nanowires[J].Science, 2008, 321(5891):930-930.
    [54] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    [55] Novoselov K S,Jiang D,Schedin F, et al. Twodimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30):10451-10453.
    [56] Hernandez Y, Nicolosi V, Lotya M, et al. Highyield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008, 3(9):563-568.
    [57] Stankovich S, Dikin D A, Dommett G H B, et al.Graphene-based composite materials[J]. Nature,2006, 442(7100):282-286.
    [58] Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper[J]. Journal of Material Chemistry, 2011, 21(10):3324-3334.
    [59] Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J].Nature Nanotechnology, 2009, 4(1):30-33.
    [60] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene[J].Nature Communications, 2011, 2:579.
    [61] Yan H G, Li X S, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5):330-334.
    [62] Chen J N, Badioli M, Alonso-Gonzalez P, et al.Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405):77-81.
    [63] Furchi M, Urich A, Pospischil A, et al.Microcavity-integrated graphene photodetector[J].Nano Letters, 2012, 12(6):2773-2777.
    [64] Grigorenko A N, Polini M, Novoselov K S.Graphene plasmonics[J]. Nature Photonics, 2012,6(11):749-758.
    [65] Liu M, Yin X B, Ulin-Avila E, et al. A graphenebased broadband optical modulator[J]. Nature,2011, 474(7349):64-67.
    [66] Gan X T, Shiue R J, Gao Y D, et al. Chipintegrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11):883-887.
    [67] Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement[J]. Applied Optics, 1988, 27(6):1160-1163.
    [68] Liedberg B, Lundstr(o|¨)m I, Stenberg E. Principles ofbiosensing with an extended coupling matrix and surface plasmon resonance[J]. Sensors and Actuators B:Chemical, 1993, 11(1/2/3):63-72.
    [69] Ho H P, Wu S Y, Yang M, et al. Application of white light-emitting diode to surface plasmon resonance sensors[J]. Sensors and Actuators B:Chemical, 2001, 80(2):89-94.
    [70] Homola J. On the sensitivity of surface plasmon resonance sensors with spectral interrogation[J].Sensors and Actuators B:Chemical, 1997, 41(1/2/3):207-211.
    [71] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance[J]. Sensors and Actuators, 1982, 3:79-88.
    [72] Liedberg B, Nylander C, Lunstrom I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4:299-304.
    [73] Zhang C L, Wang R, Min C J, et al. Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor[J]. Applied Physics Letters, 2013, 102(1):011114.
    [74] Kabashin A V, Nikitin P I. Interferometer based on a surface-plasmon resonance for sensor applications[J]. Quantum Electronics, 1997, 27(7):653-654.
    [75] Yee S S, Gauglitz G. Surface plasmon resonance sensors:review[J]. Sensors and Actuators B:Chemical, 1999, 54(1/2):3-15.
    [76] Yu X L, Wang D X, Yan Z B. Simulation and analysis of surface plasmon resonance biosensor based on phase detection[J]. Sensors and Actuators B:Chemical, 2003, 91(1/2/3):285-290.
    [77] Huang Y H, Ho H P, Kong S K, et al. Phasesensitive surface plasmon resonance biosensors:methodology, instrumentation and applications[J].Annalen Der Physik, 2012, 524(11):637-662.
    [78] Bohannon K P, Holz R W, Axelrod D. Refractive index imaging of cells with variable-angle near-total internal reflection(TIR)microscopy[J]. Microscopy and Microanalysis, 2017, 23(5):978-988.
    [79] Chiu M H, Wang S F, Chang R S. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry[J].Optics Letters, 2005, 30(3):233-235.
    [80] Kim D E, Yeom S H, Kang B H, et al. Variable wavelength surface plasmon resonance(SPR)in biosensing[J]. Biosystems, 2009, 98(1):51-55.
    [81] Herranz S, Bockova M, Marazuela M D, et al. An SPR biosensor for the detection of microcystins in drinking water[J]. Analytical and Bioanalytical Chemistry, 2010, 398(6):2625-2634.
    [82] Yanase Y, Araki A, Suzuki H, et al. Developmentof an optical fiber SPR sensor for living cell activation[J]. Biosensors and Bioelectronics, 2010,25(5):1244-1247.
    [83] Schuster T, Herschel R, Neumann N, et al.Miniaturized long-period fiber grating assisted surface plasmon resonance sensor[J]. Journal of Lightwave Technology, 2012, 30(8):1003-1008.
    [84] Guo T, Liu F, Liang X, et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J].Biosensors and Bioelectronics, 2016, 78:221-228.
    [85] Rothenhausler B, Knoll W. Surface-plasmon microscopy[J]. Nature, 1988, 332(6165):615-617.
    [86] Nelson B P, Frutos A G, Brockman J M, et al.Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments[J].Analytical Chemistry, 1999, 71(18):3928-3934.
    [87] Fu E, Foley J, Yager P. Wavelength-tunable surface plasmon resonance microscope[J]. Review of Scientific Instruments, 2003, 74(6):3182-3184.
    [88] Zybin A, Grunwald C, Mirsky V M, et al. Doublewavelength technique for surface plasmon resonance measurements:basic concept and applications for single sensors and two-dimensional sensor arrays[J]. Analytical Chemistry, 2005,77(8):2393-2399.
    [89] Shumaker-Parry J S, Aebersold R, Campbell C T.Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy[J]. Analytical Chemistry, 2004, 76(7):2071-2082.
    [90] Su Y D, Chen S J, Yeh T L. Common-path phaseshift interferometry surface plasmon resonance imaging system[J]. Optics Letters, 2005, 30(12):1488-1490.
    [91] Law W C, Markowicz P, Yong K T, et al. Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics[J]. Biosensors and Bioelectronics, 2007, 23(5):627-632.
    [92] Kabashin A V, Nikitin P I. Surface plasmon resonance interferometer for bio-and chemical-sensors[J]. Optics Communications, 1998, 150:5-8.
    [93] Wu S Y, Ho H P, Law W C, et al. Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration[J]. Optics Letters, 2004, 29(20):2378-2380.
    [94] Yuan W, Ho H P, Wong C L, et al. Surface plasmon resonance biosensor incorporated in a michelson interferometer with enhanced sensitivity[J]. IEEE Sensors Journal, 2007, 7(1):70-73.
    [95] Wang D Q, Ding L L, Zhang W, et al. A highthroughput surface plasmon resonance biosensor based on differential interferometric imaging[J].Measurement Science and Technology, 2012, 23(6):065701.
    [96] Ng S P, Wu C M L, Wu S Y, et al. Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing[J].Biosensors and Bioelectronics, 2010, 26(4):1593-1598.
    [97] Huang Y H, Ho H P, Wu S Y, et al. Phase sensitive SPR sensor for wide dynamic range detection[J]. Optics Letters, 2011, 36(20):4092-4094.
    [98] Arima Y, Iwata H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers[J].Journal of Materials Chemistry, 2007, 17(38):4079-4087.
    [99] Grigorenko A N, Beloglazov A A, Nikitin P I,et al.Dark-field surface plasmon resonance microscopy[J]. Optics Communications, 2000,174:151-155.
    [100] Kabashin A V, Evans P, Pastkovsky S, et al.Plasmonic nanorod metamaterials for biosensing[J].Nature Materials, 2009, 8(11):867-871.
    [101] Ohlsson P A, Tjarnhage T, Herbai E, et al.Liposome and proteoliposome fusion onto solid substrates, studied using atomic force microscopy,quartz crystal microbalance and surface plasmon resonance. Biological activities of incorporated components[J]. Bioelectrochemistry and Bioenergetics, 1995, 38(1):137-148.
    [102] Kang X F, Jin Y D, Cheng G J, et al. Surface plasmon resonance studies on the electrochemical doping/dedoping processes of anions on polyanilinemodified electrode[J]. Langmuir, 2002, 18(26):10305-10310.
    [103] Yuk J S, Jung J W, Hyun J, et al. Development of a scanning surface plasmon microscope based on white light for analysis of a wide range of protein arrays[J]. Sensors and Actuators B:Chemical,2008, 131(1):241-246.
    [104] Dawson P, Puygranier B A F, Goudonnet J P.Surface plasmon polariton propagation length:a direct comparison using photon scanning tunneling microscopy and attenuated total reflection[J].Physical Review B, 2001, 63(20):205410.
    [105] Yeatman E, Ash E A. Surface plasmon microscopy[J]. Electronics Letters, 1987, 23(20):1091.
    [106] Hickel W, Knoll W. Surface plasmon optical characterization of lipid monolayers at 5μm lateral resolution[J]. Journal of Applied Physics, 1990,67(8):3572-3575.
    [107] Knobloch H, von Szada-Borryszkowski G, Woigk S, et al. Dispersive surface plasmon microscopy for the characterization of ultrathin organic films[J].Applied Physics Letters, 1996, 69(16):2336-2337.
    [108] Giebel K F, Bechinger C, Herminghaus S, et al.Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy[J].Biophysical Journal, 1999, 76(1):509-516.
    [109] Zhan Q W. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam[J]. Optics Letters, 2006, 31(11):1726-1728.
    [110] Wang W, Wang S P, Liu Q, et al. Mapping singlecell-substrate interactions by surface plasmon resonance microscopy[J]. Langmuir, 2012, 28(37):13373-13379.
    [111] Wang W, Yang Y Z, Wang S P, et al. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells[J]. Nature Chemistry, 2012, 4(10):846-853.
    [112] Peterson A W, Halter M, Tona A, et al. High resolution surface plasmon resonance imaging for single cells[J]. BMC Cell Biology, 2014, 15(1):35.
    [113] Wang T X, Cao R, Ning B, et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 2015, 107(15):153702.
    [114] Ang P K, Li A, Jaiswal M, et al. Flow sensing of single cell by graphene transistor in a microfluidic channel[J]. Nano Letters, 2011, 11(12):5240-5246.
    [115] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7):411-415.
    [116] Zhan T R, Shi X, Dai Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics:Condensed Matter, 2013, 25(21):215301.
    [117] Pirruccio G, Martin Moreno L, Lozano G, et al.Coherent and broadband enhanced optical absorption in graphene[J]. ACS Nano, 2013, 7(6):4810-4817.
    [118] Xing F, Meng G X, Zhang Q, et al. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors[J]. Nano Letters, 2014. 14(6):3563-3569.
    [119] Xing F, Yang Y, Shen J F, et al. Ultra-high sensitivity, multi-parameter monitoring of dynamical gas parameters using a reduced graphene oxide microcavity[J]. Sensors and Actuators B:Chemical, 2016, 235:474-480.
    [120] Xing F, Zhang S, Yang Y,et al. Chemically modified graphene films for high-performance optical NO_2 sensors[J]. The Analyst, 2016, 141(15):4725-4732.
    [121] Zagorodko O, Spadavecchia J, Serrano A Y, et al.Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces[J]. Analytical Chemistry,2014, 86(22):11211-11216.
    [122] Singh M, Holzinger M, Tabrizian M, et al.Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors[J]. Journal of the American Chemical Society, 2015, 137(8):2800-2803.
    [123] He L J, Pagneux Q, Larroulet I, et al. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips[J]. Biosensors and Bioelectronics,2017, 89:606-611.
    [124] Sun L X, Zhang Y Q, Wang Y J, et al. Refractive index mapping of single cells with a graphene-based optical sensor[J]. Sensors and Actuators B:Chemical, 2017, 242:41-46.
    [125] Sun L X, Zhang Y Q, Wang Y J, et al. Real-time subcellular imaging based on graphene biosensors[J]. Nanoscale, 2018, 10(4):1759-1765.
    [126] Sheng Z H, Song L, Zheng J X, et al. Proteinassisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy[J]. Biomaterials, 2013, 34(21):5236-5243.
    [127] Yang F, Song W, Zhang C L, et al. Broadband graphene-based photoacoustic microscopy with high sensitivity[J]. Nanoscale, 2018, 10(18):8606-8614.
    [128] Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy:effect on mitosis and guidelines for non-invasive fluorescence microscopy[J]. The Plant Journal, 2003, 36(2):280-290.
    [129] Hoebe R A, van Oven C H, Gadella T W J, et al.Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 2007,25(2):249-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700