5-羟甲基糠醛制备及其应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on Preparation and Application of 5-Hydroxymethylfurfural
  • 作者:卢思 ; 王琼 ; 李浔 ; 亓伟 ; 王忠铭 ; 袁振
  • 英文作者:LU Si;WANG Qiong;LI Xun;QI Wei;WANG Zhongming;YUAN Zhenhong;College of Chemical and Biology Engineering,Changsha University of Science and Technology;Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,CAS Key Laboratory of Renewable Energy;
  • 关键词:5-羟甲基糠醛 ; 生物质 ; 催化剂 ; 衍生化学品
  • 英文关键词:5-hydroxymethylfurfural;;biomass;;catalyst;;derivative chemicals
  • 中文刊名:LCHX
  • 英文刊名:Chemistry and Industry of Forest Products
  • 机构:长沙理工大学化学与生物工程学院;中国科学院广州能源研究所中国科学院可再生能源重点实验室;
  • 出版日期:2019-02-28
  • 出版单位:林产化学与工业
  • 年:2019
  • 期:v.39;No.177
  • 基金:国家自然科学基金资助项目(51676193);; 中国科学院青年创新促进会项目(2017401);; 广州市科技计划项目(201804010187)
  • 语种:中文;
  • 页:LCHX201901003
  • 页数:10
  • CN:01
  • ISSN:32-1149/S
  • 分类号:17-26
摘要
5-羟甲基糠醛(HMF)被认为是最重要的生物质基平台分子之一,广泛应用于制备精细化学品、关键医药中间体、功能聚酯、溶剂和液体燃料等多功能化合物。目前,HMF的制备是生物质领域研究的热点,大量的研究使得制备HMF的原料和方法得到不断扩展。简单介绍了HMF的主要制备方法及其反应机理,系统综述了制备HMF的催化体系,包括催化过程中所使用的催化剂(无机酸、离子液体、金属氯化物、固体酸及其他催化剂)种类及制备HMF的溶剂体系。归纳了HMF重要衍生物的制备路径及应用,总结了目前研究中所存在的问题,并展望了未来的研究方向。
        5-Hydroxymethylfurfural(HMF) is one of the most important biomass-based platform molecules and widely used in the preparation of multifunctional compounds such as fine chemicals, key pharmaceutical intermediates, functional polyesters, solvents and liquid fuels. At present, the preparation of HMF is a hot spot in the field of biomass research, and the raw materials and methods for preparing HMF have been continuously expanded. This paper reviews the main preparation methods and research progress of HMF. Catalysis systems for HMF preparation is systematically described, including the types of the catalysts(mineral acids, ionic liquids, metal chlorides, solid acids and others) used in the catalytic process and the solvent systems. Then, the preparation paths and applications of important derivatives from HMF are summarized. Finally, suggestions for future research on HMF are provided based on the understanding of problems existing in the current research.
引文
[1]ISIKGOR F,BECER C R. Lignocellulosic biomass:A sustainable platform for the production of bio-based chemicals and polymers[J]. Polymer Chemistry,2015,6:4497-4559.
    [2]WETTSTEIN S G,ALONSO D M,GüRBüZ E I,et al. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels[J]. Current Opinion in Chemical Engineering,2012,1:218-224.
    [3]VLACHOS D G,CARATZOULAS S. The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis[J]. Chemical Engineering Science,2010,65(1):18-29.
    [4]TONG X L,MA Y,LI Y D. Biomass into chemicals:Conversion of sugars to furan derivatives by catalytic processes[J]. Applied Catalysis A:General,2010,385(1/2):1-13.
    [5]MUKHERJEE A,DUMONT M J,RAGHAVAN V. Review:Sustainable production of hydroxymethylfurfural and levulinic acid:challenges and opportunities[J]. Biomass & Bioenergy,2015,72:143-183.
    [6]MOREAU C,DURAND R,RAZIGADE S,et al. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites[J]. Applied Catalysis A General,1996,145(1/2):211-224.
    [7]AKIEN G R,QI L,HORVáTH I T. Molecular mapping of the acid catalysed dehydration of fructose[J]. Chemical Communications,2012,48(47):5850-5852.
    [8]AMARASEKARA A,WILLIAMS L,EBEDE C. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ℃:An NMR study[J]. Carbohydrate Research,2008,343(18):3021-3024.
    [9]ROMáN-LESHKOV Y,CHHEDA J N,DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [10]CHHEDA J N,ROMáN-LESHKOV Y,DUMESIC J A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides[J]. Green Chemistry,2007,9(4):342-350.
    [11]HANSEN T S,WOODLEY J M,RIISAGER A. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose[J]. Carbohydrate Research,2009,344(18):2568-2572.
    [12]LI C Z,ZHAO Z K,WANG A Q,et al. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions[J]. Carbohydrate Research,2010,345(13):1846-1850.
    [13]ANTAL J M J,MOK W S L,RICHARDS G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate Research,1990,199(1):91-109.
    [14]SUN Y H,LIU P T,LIU Z. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC[J]. Carbohydrate Polymers,2016,142:177-182.
    [15]DUTTA S,PAL S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels:Combined solvent-nanocatalysis approach for biorefinary[J]. Biomass & Bioenergy,2014,62(1):182-197.
    [16]MOREAU C,FINIELS A,VANOYE L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. Journal of Molecular Catalysis A:Chemical,2006,253(1):165-169.
    [17]BAO Q X,QIAO K,TOMIDA D,et al. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid[J]. Catalysis Communications,2008,9(6):1383-1388.
    [18]LI C Z,ZHAO Z B K,CAI H L,et al. Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts[J]. Biomass & Bioenergy,2011,35(5):2013-2017.
    [19]RAMLI N A S,AMIN N A S. Thermo-kinetic assessment of glucose decomposition to 5-hydroxymethyl furfural and levulinic acid over acidic functionalized ionic liquid[J]. Chemical Engineering Journal,2018,335:221-230.
    [20]SERI K I,INOUE Y,ISHIDA H. Highly efficient catalytic activity of Lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents[J]. Chemistry Letters,2000,29(1):22-23.
    [21]ZHAO H B,HOLLADAY J E,BROWN H,et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316:1597-1600.
    [22]BINDER J B,RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985.
    [23]LIMA S,NEVES P,ANTUNES M M,et al. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids[J]. Applied Catalysis A:General,2009,363(1/2):93-99.
    [24]ILGEN F,OTT D,KRALISCH D,et al. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures[J]. Green Chemistry,2009,11:1948-1954.
    [25]RASRENDRA C B,MAKERTIHARTHA I G B N,ADISASMITO S,et al. Green chemicals from D-glucose:Systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions[J]. Topics in Catalysis,2010,53(15/16/17/18):1241-1247.
    [26]CAO Q,GUO X C,YAO S X,et al. Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst[J]. Carbohydrate Research,2011,346(7):956-959.
    [27]田玉奎,邓晋,潘涛,等. 离子液体中Lewis酸催化葡萄糖和果糖脱水制5-羟甲基呋喃甲醛[J]. 催化学报,2011,32(6):997-1002. TIAN Y K,DENG J,PAN T,et al. Dehydration of glucose and fructose into 5-hydroxymethylfural catalyzed by lewis acid in ionic liquids[J]. Chinese Journal of Catalysis,2011,32(6):997-1002.
    [28]WEI Z J,LI Y,THUSHARA D,et al. Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Au chlorides in ionic liquids[J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(2):363-370.
    [29]YANG Y,HU C W,ABU-OMAR M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green Chemistry,2012,14(2):509-513.
    [30]MITTAL N,NISOLA G M,CHUNG W J. Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by Niobium pentachloride[J]. Tetrahedron Letters,2012,53(25):3149-3155.
    [31]ZHANG Z H,LIU B,ZHAO Z T. Conversion of fructose into 5-HMF catalyzed by GeCl4,in DMSO and [Bmim]Cl system at room temperature[J]. Carbohydrate Polymers,2012,88(3):891-895.
    [32]ZHOU X M,ZHANG Z H,LIU B,et al. Microwave-assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural by ScCl3 in ionic liquids[J]. Carbohydrate Research,2013,375(12):68-72.
    [33]YAN L,LASKAR D D,LEE S J,et al. Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides[J]. RSC Advances,2013,3:24090-24098.
    [34]THOMBAL R S,JADHAV V H. Efficient conversion of carbohydrates to 5-hydroxymethylfurfural (HMF) using ZrCl4 catalyst in nitromethane[J]. Biofuel Research Journal,2014,3:81-84.
    [35]WRIGSTEDT P,KESKIV? M,LESKEL? M,et al. The role of salts and Br?nsted acids in Lewis acid-catalyzed aqueous-phase glucose dehydration to 5-hydroxymethylfurfural[J]. ChemCatChem,2015,7(3):501-507.
    [36]WANG C,ZHANG L M,ZHOU T,et al. Synergy of Lewis and Br?nsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural[J]. Scientific Reports,2017,7:40908-40917.
    [37]JIA S Y,HE X J,XU Z W. Valorization of an underused sugar derived from hemicellulose:Efficient synthesis of 5-hydroxymethylfurfural from mannose with aluminum salt catalyst in dimethyl sulfoxide/water mixed solvent[J]. RSC Advances,2017,7:39221-39227.
    [38]CRISCI A J,TUCKER M H,DUMESIC J A,et al. Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural[J]. Topics in Catalysis,2010,53(15/16/17/18):1185-1192.
    [39]QI X H,WATANABE M,AIDA T M,et al. Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids[J]. Green Chemistry,2010,12(10):1855-1860.
    [40]NIKOLLA E,ROMáN-LESHKOV Y,MOLINER M,et al. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite[J]. ACS Catalysis,2011,1(4):408-410.
    [41]WANG J J,XU W J,REN J W,et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid[J]. Green Chemistry,2011,13(10):2678-2681.
    [42]DE S,DUTTA S,PATRA A K,et al. Self-assembly of mesoporous TiO2 nanospheres viaaspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis[J]. Journal of Materials Chemistry,2011,21(43):17505-17510.
    [43]YANG Y,XIANG X,TONG D M,et al. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO/ZrO2-Al2O3 solid catalyst[J]. Bioresource Technology,2012,116:302-306.
    [44]GUO F,FANG Z,ZHOU T J. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures[J]. Bioresource Technology,2012,112:313-318
    [45]LIU R L,CHEN J Z,HUANG X,et al. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials[J]. Green Chemistry,2013,15(10):2895-2903.
    [46]LI Y,LIU H,SONG C H,et al. The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid[J]. Bioresource Technology,2013,133:347-353.
    [47]JADHAV A H,KIM H,HWANG I T. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water[J]. Bioresource Technology,2013,132:342-350.
    [48]ZHANG J H,LI J K,LIN L. Dehydration of sugar mixture to HMF and furfural over SO/ZrO2-TiO2 catalyst[J]. Bioresources,2014,9(3):4194-4204.
    [49]NANDIWALE K Y,GALANDE N D,THAKUR P,et al. One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst[J]. ACS Sustainable Chemistry & Engineering,2014,2:1928-1932.
    [50]LIU J,LI H,LIU Y C,et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over nano-sized mesoporous Al2O3-B2O3,solid acids[J]. Catalysis Communications,2015,62:19-23.
    [51]ZHAO J,ZHOU C M,HE C,et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts[J]. Catalysis Today,2016,264:123-130.
    [52]HAN B,ZHAO P,HE R,et al. Catalytic conversion of glucose to 5-hydroxymethyfurfural over B2O3 supported solid acids catalysts[J]. Waste Biomass Valorization,2018,9:2181-2190.
    [53]DAI J H,ZHU L F,TANG D Y,et al. Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural[J]. Green Chemistry,2017,19(8):1932-1939.
    [54]WANG Q f,HAO J Q,ZHAO Z B. Microwave-assisted conversion of fructose to 5-hydroxymethylfurfural using sulfonated porous carbon derived from biomass[J]. Australian Journal of Chemistry,2018,71(1):24-31.
    [55]DOU Y W,ZHOU S,OLDANI C,et al. 5-Hydroxymethylfurfural production from dehydration of fructose catalyzed by Aquivion@silica solid acid[J]. Fuel,2018,214:45-54.
    [56]HUANG F M,SU Y W,TAO Y,et al. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst[J]. Fuel,2018,226:417-422.
    [57]WANG L,ZHANG L,LI H,et al. High selective production of 5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst[J]. Composites Part B:Engineering,2019,156:88-94.
    [58]AGARWAL B,KAILASAM K,SANGWAN R S,et al. Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars:A review[J]. Renewable and Sustainable Energy Reviews,2018,82:2408-2425.
    [59]LI Y,YAN X P,XU S Q,et al. One-pot synthesis of 5-hydroxymethylfurfural from carbohydrates using an inexpensive FePO4 catalyst[J]. RSC Advances,2015,5(26):19900-19906.
    [60]RUBY M P,SCHüTH F. Synthesis of N-alkyl-4-vinylpyridinium-based cross-linked polymers and their catalytic performance for the conversion of fructose into 5-hydroxymethylfurfural[J]. Green Chemistry,2016,18(11):3422-3429.
    [61]ZHOU J X,TANG Z,JIANG X P,et al. Catalytic conversion of glucose into 5-hydroxymethyl-furfural over chromium-exchanged bentonite in ionic liquid-dimethyl sulfoxide mixtures[J]. Waste Biomass Valorization,2016,7(6):1-12.
    [62]SAHA B,ABU-OMAR M M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry,2014,16(1):24-38.
    [63]BURKET C,SABESAN S. Process for furfural production from biomass:US 524924[P]. 2013-09-03.
    [64]ROSATELLA A A,SIMEONOV S P,FRADE R F M,et al. 5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties,synthesis and synthetic applications[J]. Green Chemistry,2011,13(4):754-793.
    [65]VASUDEVAN V,MUSHRIF S H. Insights into the solvation of glucose in water,dimethyl sulfoxide (DMSO),tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals[J]. RSC Advances,2015,5:20756-20763.
    [66]ZHANG T,KUMAR R,WYMAN C E. Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass[J]. RSC Advances,2013,3:9809-9819.
    [67]CAI C M,ZHANG T,KUMAR R,et al. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass[J]. Green Chemistry,2013,15(11):3140-3145.
    [68]CAI C M,NAGANE N,KUMAR R,et al. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy[J]. Green Chemistry,2014,16(8):3819-3829.
    [69]SHUAI L,LUTERBACHER J. Organic solvent effects in biomass conversion reactions[J]. ChemSusChem,2016,9(2):133-155.
    [70]QI L,MUI Y F,LO S W,et al. Catalytic conversion of fructose,glucose,and sucrose to 5-(hydroxymethyl) furfural and levulinic and formic acids in γ-valerolactone as a green solvent[J]. ACS Catalysis,2014,4(5):1470-1477.
    [71]ZHANG L X,YU H B,WANG P,et al. Production of furfural from xylose,xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresource Technology,2014,151:355-360.
    [72]GüRBüZ E I,ALONSO D M,BOND J Q,et al. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels[J]. ChemSusChem,2011,4(3):357-361.
    [73]MOTAGAMWALA A H,WON W,SENER C,et al. Toward biomass-derived renewable plastics:Production of 2,5-furandicarboxylic acid from fructose[J/OL]. Science Advances,2018,4(1):1-8[2018-04-22]. http://advances.sciencemag.org/content/4/1/eaap9722.full.DOI:10.1126/sciadv.aap9722.
    [74]ANTONYRAJ C A,JEONG J,KIM B,et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production[J]. Journal of Industrial & Engineering Chemistry,2013,19(3):1056-1059.
    [75]LIU B,REN Y,ZHANG Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions[J]. Green Chemistry,2015,17(3):1610-1617.
    [76]HAN X W,LI C Q,GUO Y,et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Applied Catalysis A:General,2016,526:1-8.
    [77]VENTURA M,LOBEFARO F,GIGLIO E D,et al. Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran or 2-formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts[J]. ChemSusChem,2018,11(8):1305-1315.
    [78]SCHOLZ D,AELLIG C,HERMANS I. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural[J]. ChemSusChem,2014,7(1):268-275.
    [79]KONG X,ZHENG R X,ZHU Y F,et al. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural[J]. Green Chemistry,2015,17(4):2504-2514.
    [80]YANG P P,XIA Q N,LIU X H,et al. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst[J]. Fuel,2017,187:159-166.
    [81]LI S S,CHEN F,LI N,et al. Synthesis of renewable triketones,diketones,and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones[J]. ChemSusChem,2017,10(4):711-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700