石墨炔在锂/钠离子电池负极中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applications of Graphdiyne in Li~+/Na~+ Battery Anodes
  • 作者:左自成 ; 李玉良
  • 英文作者:ZUO Zicheng;LI Yuliang;Beijing National Laboratory for Molecular Sciences,CAS Research/Education Center for Excellence in Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:石墨炔 ; 二维材料 ; 锂离子电池 ; 钠离子电池 ; 负极
  • 英文关键词:graphdiyne;;2D material;;lithium-ion battery;;sodium-ion battery;;anode
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:中国科学院化学研究所北京分子科学国家实验室中国科学院分子科学科教融合卓越中心;中国科学院大学;
  • 出版日期:2018-08-24
  • 出版单位:应用化学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(21790050,21790051);; 国家重点研究与发展计划(2016YFA0200104);; 中国科学院前沿科学重点研究计划(QYZDY-SSW-SLH015)资助~~
  • 语种:中文;
  • 页:YYHX201809011
  • 页数:10
  • CN:09
  • ISSN:22-1128/O6
  • 分类号:90-99
摘要
二维石墨炔优异的物理和化学性质受到了广泛的关注。近几年,与石墨炔相关的理论、合成和应用研究快速发展,并取得显著成果。基于石墨炔独特的制备方式与可控的分子结构,其已经在很多传统的研究领域展现出潜力,也在一些新兴的研究方向上产生重要影响,表明石墨炔的研究正逐渐成为一个非常热门研究领域。而石墨炔在电化学储能方面的研究越来越多,文章概述了石墨炔与电化学储能相关的优异特性,总结了石墨炔的常规制备方法,重点讨论了在低温制备优势下石墨炔家族成员的迅速壮大和相应石墨炔新成员独特结构对电化学储锂和储钠行为的影响。
        Two-dimensional graphdiyne has received widely attentions due to its outstanding physical and chemical properties. Many remarkable progresses of graphdiyne in the theories,preparations,and applications have been received in recent years. Based on its native particularities in the preparations and molecular structure,graphdiyne has already shown many promises in the traditional research areas, and brought important impacts in some new research directions,demonstrating that the graphdiyne has gradually become a hot research field. Its applications in electrochemical energy storage have received more and more attentions.This paper describes the original advantages of graphdiyne in the electrochemical energy storages,summarizes the developments in preparations,and mainly discusses the expansion of graphdiyne family via low-temperature synthesis and their electrochemical behaviors in storing the lithium/sodium ions.
引文
[1]Georgakilas V,Perman J A,Tucek J,et al.Broad Family of Carbon Nanoallotropes:Classification,Chemistry,and Applications of Fullerenes,Carbon Dots,Nanotubes,Graphene,Nanodiamonds,and Combined Superstructures[J].Chem Rev,2015,115(11):4744-4822.
    [2]Dai L.Functionalization of Graphene for Efficient Energy Conversion and Storage[J].Acc Chem Res,2013,46(1):31-42.
    [3]Wassei J K,Kaner R B.Oh,the Places You'll Go with Graphene[J].Acc Chem Res,2013,46(10):2244-2253.
    [4]Englert J M,Dotzer C,Yang G A,et al.Covalent Bulk Functionalization of Graphene[J].Nat Chem,2011,3(4):279-286.
    [5]Xin S,Guo Y G,Wan L J.Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J].Acc Chem Res,2012,45(10):1759-1769.
    [6]Choi N S,Chen Z,Freunberger S A,et al.Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J].Angew Chem Int Ed,2012,51(40):9994-10024.
    [7]Lin F,Liu Y,Yu X,et al.Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries[J].Chem Rev,2017,117(21):13123-13186.
    [8]Li X S,Cai W W,An J H,et al.Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J].Science,2009,324(5932):1312-1314.
    [9]Hong G,Zhang B,Peng B,et al.Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array[J].J Am Chem Soc,2009,131(41):14642-14643.
    [10]Kroto H W,Heath J R,O'Brien S C,et al.C60 Buckminsterfullerence[J].Nature,1985,318:162-163.
    [11]Li G,Li Y,Liu H,et al.Architecture of Graphdiyne Nanoscale Films[J].Chem Commun,2010,46(19):3256-3258.
    [12]Li Y,Li Y.Two Dimensional Polymers-Progress of Full Carbon Graphyne[J].Acta Polym Sin,2015,2:147-165.
    [13]Chen Y,Liu H,Li Y.Progress and Prospect of Two Dimensional Carbon Graphdiyne[J].Chinese Sci Bull,2016,61(26):2901-2912.
    [14]HUANG Yanmin,YUAN Mingjian,LI Yuliang.Two-Dimensional Semiconducting Materials and Devices:From Traditional Two-Dimensional Optoelectronic Materials to Graphdiyne[J].Chinese J Inorg Chem,2017,33(11):1914-1936(in Chinese).黄彦民,袁明鉴,李玉良.二维半导体材料与器件——从传统二维光电材料到石墨炔[J].无机化学学报,2017,33(11):1914-1936.
    [15]Li Y.Design and Self-Assembly of Advanced Functional Molecular Materials-From Low Dimension to Multi-Dimension[J].Sci Sin Chim,2017,47(47):1045-1056.
    [16]Huang C,Li Y.Structure of 2D Graphdiyne and Its Application in Energy Fields[J].Acta Phys Chim Sin,2016,32(6):1314-1329.
    [17]Li Y,Xu L,Liu H,et al.Graphdiyne and Graphyne:From Theoretical Predictions to Practical Construction[J].Chem Soc Rev,2014,43(8):2572-2586.
    [18]LI Yongjun,LI Yuliang.Two Dimensional Polymers—Progress of Full Carbon Graphyne[J].Acta Polym Sin,2015,(2):147-165(in Chinese).李勇军,李玉良.二维高分子——新碳同素异形体石墨炔研究[J].高分子学报,2015,(2):147-165.
    [19]Lu C,Yang Y,Wang J,et al.High-performance Graphdiyne-Based Electrochemical Actuators[J].Nat Commun,2018,9(1):752.
    [20]Siemsen P,Livingston R C,Diederich F.Acetylenic Coupling:A Powerful Tool in Molecular Construction[J].Angew Chem Int Ed,2000,39(15):2632-2657.
    [21]Diederich F.Carbon Scaffolding:Building Acetylenic All-Carbon and Carbon-Rich Compounds[J].Nature,1994,369(6477):199-207.
    [22]Xue Y,Guo Y,Yi Y,et al.Self-catalyzed Growth of Cu@Graphdiyne Core-Shell Nanowires Array for High Efficient Hydrogen Evolution Cathode[J].Nano Energy,2016,30:858-866.
    [23]Xue Y,Zuo Z,Li Y,et al.Graphdiyne-Supported Ni Co2S4Nanowires:A Highly Active and Stable 3D Bifunctional Electrode Material[J].Small,2017,13(31):1700936.
    [24]Wang S,Yi L X,Halpert J E,et al.A Novel and Highly Efficient Photocatalyst Based on P25-Graphdiyne Nanocomposite[J].Small,2012,8(2):265-271.
    [25]Xue Y R,Li J F,Xue,Z,et al.Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of p H[J].ACS Appl Mater Interfaces,2016,8(45):31083-31091.
    [26]Long M,Tang L,Wang D,et al.Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons:Theoretical Predictions[J].ACS Nano,2011,5(4):2593-2600.
    [27]Chen J,Xi J,Wang D,et al.Carrier Mobility in Graphyne Should be Even Larger than That in Graphene:A Theoretical Prediction[J].J Phys Chem Lett,2013,4(9):1443-1448.
    [28]Yang N L,Liu Y Y,Wen H,et al.Photocatalytic Properties of Graphdiyne and Graphene Modified Ti O2:From Theory to Experiment[J].ACS Nano,2013,7(2):1504-1512.
    [29]Xiao J,Shi J,Liu H,et al.Efficient C H3NH3Pb I3Perovskite Solar Cells Based on Graphdiyne(GD)-Modified P3HT Hole-Transporting Material[J].Adv Energy Mater,2015,5(8):1401943.
    [30]Gao X,Li J,Du R,et al.Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell[J].Adv Mater,2017,29(9):1605308.
    [31]Ren H,Shao H,Zhang L,et al.A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells[J].Adv Energy Mater,2015,5(12):1500296.
    [32]Yue Q,Chang S,Kang J,et al.Mechanical and Electronic Properties of Graphyne and Its Family under Elastic Strain:Theoretical Predictions[J].J Phys Chem C,2013,117(28):14804-14811.
    [33]Wu B,Li M R,Xiao S N,et al.A Graphyne-Like Porous Carbon-Rich Network Synthesized via Alkyne Metathesis[J].Nanoscale,2017,9(33):11939-11943.
    [34]Gao J,Li J,Chen Y,et al.Architecture and Properties of a Novel Two-Dimensional Carbon Material-Graphtetrayne[J].Nano Energy,2018,43:192-199.
    [35]Li G,Li Y,Qian X,et al.Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission[J].J Phys Chem C,2011,115(6):2611-2615.
    [36]Kang J,Li J,Wu F,et al.Elastic,Electronic,and Optical Properties of Two-Dimensional Graphyne Sheet[J].J Phys Chem C,2011,115(42):20466-20470.
    [37]Peng Q,Ji W,De S.Mechanical Properties of Graphyne Monolayers:A First-Principles Study[J].Phys Chem Chem Phys,2012,14(38):13385-13391.
    [38]Degabriele E P,Grima-Cornish J N,Attard D,et al.On the Mechanical Properties of Graphyne,Graphdiyne,and Other Poly(phenylacetylene)Networks[J].Phys Status Solidi B,2017,254(9):1700380.
    [39]Yang Y,Xu X.Mechanical Properties of Graphyne and Its Family-A Molecular Dynamics Investigation[J].Comput Mater Sci,2012,61:83-88.
    [40]Xu Z,Lv X,Li J,et al.A Promising Anode Material for Sodium-Ion Battery with High Capacity and High Diffusion Ability:Graphyne and Graphdiyne[J].RSC Adv,2016,6(30):25594-25600.
    [41]Farokh Niaei A H,Hussain T,Hankel M,et al.Sodium-intercalated Bulk Graphdiyne as an Anode Material for Rechargeable Batteries[J].J Power Sources,2017,343:354-363.
    [42]Zhang H,Xia Y,Bu H,et al.Graphdiyne:A Promising Anode Material for Lithium Ion Batteries with High Capacity and Rate Capability[J].J Appl Phys,2013,113(4):044309.
    [43]Chandra Shekar S,Swathi R S.Rattling Motion of Alkali Metal Ions Through the Cavities of Model Compounds of Graphyne and Graphdiyne[J].J Phy Chem A,2013,117(36):8632-8641.
    [44]Shekar S C,Swathi R S.Cation-πInteractions and Rattling Motion Through Two-Dimensional Carbon Networks:Graphene vs Graphynes[J].J Phys Chem C,2015,119(16):8912-8923.
    [45]Sun C,Searles D J.Lithium Storage on Graphdiyne Predicted by DFT Calculations[J].J Phys Chem C,2012,116(50):26222-26226.
    [46]Li C,Lu X,Han Y,et al.Direct Imaging and Determination of the Crystal Structure of Six-Layered Graphdiyne[J].Nano Res,2018,11(3):1714-1721.
    [47]Matsuoka R,Sakamoto R,Hoshiko K,et al.Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface[J].J Am Chem Soc,2017,139(8):3145-3152.
    [48]Kan X,Ban Y,Wu C,et al.Interfacial Synthesis of Conjugated Two-Dimensional N-Graphdiyne[J].ACS Appl Mater Interfaces,2018,10(1):53-58.
    [49]Zhang H,Zhao M,He X,et al.High Mobility and High Storage Capacity of Lithium in sp-sp2 Hybridized Carbon Network:The Case of Graphyne[J].J Phys Chem C,2011,115(17):8845-8850.
    [50]Zhou J,Gao X,Liu R,et al.Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction[J].J Am Chem Soc,2015,137(24):7596-7599.
    [51]Matsuoka R,Toyoda R,Shiotsuki R,et al.Expansion of the Graphdiyne Family:A Triphenylene-Cored Analogue[J].ACS Appl Mater Interfaces,2018,DOI:10.1021/acsami.8b00743.
    [52]Li J,Xiong Y,Xie Z,et al.Template Synthesis of an Ultrathin beta-Graphdiyne-Like Film Using the Eglinton Coupling Reaction[J].ACS Appl Mater Interfaces,2018,DOI:10.1021/acsami.8b03028.
    [53]Zhou J,Xie Z,Liu R,et al.Synthesis of Ultrathin Graphdiyne Film Using a Surface Template[J].ACS Appl Mater Interfaces,2018,10.1021/acsami.1028b02612.
    [54]Liu R,Gao X,Zhou J,et al.Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil[J].Adv Mater,2017,29(18):1604665.
    [55]Qian X,Liu H,Huang C,et al.Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon[J].Sci Rep,2015,5:7756.
    [56]Zhang Y Q,Kepcija N,Kleinschrodt M,et al.Homo-coupling of Terminal Alkynes on a Noble Metal Surface[J].Nat Commun,2012,3:1286.
    [57]Sun Q,Yu X,Bao M,et al.Direct Formation of C-C Triple Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of Tribromomethyl Molecules[J].Angew Chem Int Ed,2018,57(15):4035-4038.
    [58]Shang H,Zuo Z,Zheng H,et al.N-Doped Graphdiyne for High-Performance Electrochemical Electrodes[J].Nano Energy,2018,44:144-154.
    [59]Zuo Z,Shang H,Chen Y,et al.A Facile Approach for Graphdiyne Preparation under Atmosphere for an Advanced Battery Anode[J].Chem Commun,2017,53(57):8074-8077.
    [60]Wang F,Zuo Z,Shang H,et al.Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode[J].ACS Appl Mater Interfaces,2018,DOI:10.1021/acsami.8b01383.
    [61]Huang C,Zhang S,Liu H,et al.Graphdiyne for High Capacity and Long-Life Lithium Storage[J].Nano Energy,2015,11:481-489.
    [62]Zhang S,Liu H,Huang C,et al.Bulk Graphdiyne Powder Applied for Highly Efficient Lithium Storage[J].Chem Commun,2015,51(10):1834-1837.
    [63]Wang K,Wang N,He J,et al.Graphdiyne Nanowalls as Anode for Lithium-Ion Batteries and Capacitors Exhibit Superior Cyclic Stability[J].Electrochim Acta,2017,253:506-516.
    [64]Wang K,Wang N,He J,et al.Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors[J].ACS Appl Mater Interfaces,2017,9(46):40604-40613.
    [65]Shang H,Zuo Z,Li L,et al.Ultrathin Graphdiyne Nanosheets Grown in Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes[J].Angew Chem Int Ed,2018,57(3):774-778.
    [66]Zhang S,Du H,He J,et al.Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage[J].ACS Appl Mater Interfaces,2016,8(13):8467-8473.
    [67]Lv Q,Si W Y,Yang Z,et al.Nitrogen-Doped Porous Graphdiyne:A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction[J].ACS Appl Mater Interfaces,2017,9(35):29744-29752.
    [68]Zhang S S,Cai Y J,He H Y,et al.Heteroatom Doped Graphdiyne as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium[J].J Mater Chem A,2016,4(13):4738-4744.
    [69]Liu R,Liu H,Li Y,et al.Nitrogen-doped Graphdiyne as a Metal-Free Catalyst for High-Performance Oxygen Reduction Reactions[J].Nanoscale,2014,6(19):11336-11343.
    [70]He J,Wang N,Cui Z,et al.Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries[J].Nat Commun,2017,8(1):1172.
    [71]Du R,Zhang N,Xu H,et al.CMP Aerogels:Ultrahigh-Surface-Area Carbon-Based Monolithic Materials with Superb Sorption Performance[J].Adv Mater,2014,26(47):8053-8058.
    [72]Wang N,He J,Tu Z,et al.Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage[J].Angew Chem Inter Ed,2017,56(36):10740-10745.
    [73]Wang N,Li X,Tu Z,et al.Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage[J].Angew Chem Int Ed,2018,57(15):3968-3973.
    [74]Yang Z,Shen X,Wang N,et al.Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion[J].ACS Appl Mater Interfaces,2018,DOI:10.1021/acsami.8b01823.
    [75]Jia Z,Zuo Z,Yi Y,et al.Low Temperature,Atmospheric Pressure for Synthesis of a New Carbon Ene-yne and Application in Li Storage[J].Nano Energy,2017,33:343-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700