基于最大熵模型预测水杨柳的潜在生境分布
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Predicting geographical distributions of Homonoia riparia Lour by using Maximum Entropy
  • 作者:周扬 ; 易雨君 ; 杨雨风 ; 王文君
  • 英文作者:ZHOU Yang;YI Yujun;YANG Yufeng;WANG Wenjun;Ministry of Education Key Laboratory of Water and Sediment Science, School of Environment, Beijing Normal University;State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment,Beijing Normal University;
  • 关键词:生境适宜度模型 ; 水杨柳 ; 最大熵 ; 气候变化 ; 潜在分布区
  • 英文关键词:species distribution model;;homonoia riparia Lour;;MAXENT;;climate change;;potential geographic distribution
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:北京师范大学环境学院水环境模拟与污染控制国家重点实验室;北京师范大学环境学院水沙科学教育部重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:v.50;No.547
  • 基金:国家重点研发计划(2016YFC0502209,2018YFC0407403);; 国家自然科学基金(51722901,51439001)
  • 语种:中文;
  • 页:SJWJ201905009
  • 页数:9
  • CN:05
  • ISSN:11-1757/TV
  • 分类号:76-84
摘要
为了解水杨柳的潜在分布,以保护水杨柳种群,根据51条种群分布记录,选取19个主要环境影响因子,运用最大熵模型(MAXENT)模拟三个历史时期(1950—1959年、1975—1985年、2000—2009年)并预测了两个未来气候变暖的情景下(RCP 2.6和RCP 8.5)水杨柳在云南省的潜在生境分布。结果表明:水杨柳生境距离河流越近,适宜度越高,水杨柳生境适宜度的分布与云南省的水系分布相关性越高,适宜度大于0.6的区域都分布在水系附近。模型计算结果显示,三个历史时期水杨柳生境适宜度大于0.6的面积逐渐增加,1975—1985年相对于1950—1959年云南省水杨柳生境适宜度大于0.6的区域面积增加了632 km~2,但2010年实地调查发现水电站建设淹没了大量水杨柳生境面积。RCP 2.6和RCP 8.5两个未来气候变暖情景下的水杨柳生境适宜度计算结果表明,随着气候变暖,水杨柳生境适宜度有所提高,且气候越温暖,水杨柳生境适宜度提升越大。
        In order to explore potential distribution of the Homonoia riparia Lour, and protect this threatened species, the 19 major environmental impact factors are selected from 51 sampled localities, and the maximum entropy(MAXENT) model is used to predict the potential geographic distributions of the H. riparia Lour under the three historical period(1950-1959, 1975-1985, 2000-2009) and two climate change scenarios(RCP 2.6 and RCP 8.5). The result shows that(1) the annual average temperature and elevation are two important factors in determining the habitat distribution of H. riparia Lour, the habitat suitability greater than 0.6 is distributed near the riverside. Three historical period reconstruction shows that from 1950-1959 to 2000-2009, habitat suitability(>0.6) of H. riparia Lour is gradually increased. However, the investigative results illustrated that the habitat area of H. riparia Lour decreased sharply in 2010, and the mainly reason is the construction of hydraulic project. The research also reports the quantitative predictions of climate change(RCP 2.6 and RCP 8.5) on H. riparia Lour, and the result displays that global warming is conducive to expanding the habitat of H. riparia Lour, and the warmer the climate is, the higher the habitat of H. riparia Lour is.
引文
[1] LIU J,LINDERMAN M,OUYANG Z,et al.Ecological degradation in protected areas:the case of Wolong Nature Reserve for giant pandas[J].Science,2001,292(5514):98- 101.
    [2] GRIMM N B,FAETH S H,GOLUBIEWSKI N E,et al.Global change and the ecology of cities[J].Science,2008,319(5864):756- 760.
    [3] Stuart S N,Adams R J,Jenkins M.Biodiversity in Sub-Saharan Africa and its islands:conservation management and sustainable use[M].Gland:International Union for The Conservation of Nature and Natural Resources[IUCN],1990.
    [4] KRUESS A,TSCHARNTKE T.Habitat fragmentation,species loss,and biological control[J].Science,1994,264:1581- 1584.
    [5] GREZ A A,ZAVIEZO T,TISCHENDORF L,et al.A transient,positive effect of habitat fragmentation on insect population densities[J].Oecologia,2004,141:444- 451.
    [6] TILMAN D,FARGIONE J,WOLFF B,et al.Forecasting agriculturally driven global environmental change[J].Science,2001,292:281- 284.
    [7] GARDNER T A,HERNáNDEZ M I M,BARLOW J,et al.Understanding the biodiversity consequences of habitat change:the value of secondary and plantation forests for neotropical dung beetles[J].Journal of Applied Ecology,2008,45(3):883- 893.
    [8] JAYNES E T.Information theory and statistical mechanics[J].Physical Review,1957,106(4):620.
    [9] 邢丁亮,郝占庆.最大熵原理及其在生态学研究中的应用[J].生物多样性,2011,19(3):295- 302.
    [10] PHILLIPS S J,ANDERSON R P,SCHAPIRE R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling,2006,190(3):231- 259.
    [11] ENARI H,SAKAMAKI-ENARI H.Impact assessment of dam construction and forest management for Japanese macaque habitats in snowy areas[J].American Journal of Primatology,2014,76(3):271- 280.
    [12] YANG X Q,KUSHWAHA S P S,SARAN S,et al.Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L.in Lesser Himalayan foothills[J].Ecological Engineering,2013,51:83- 87.
    [13] ADHIKARI D,BARIK S K,UPADHAYA K.Habitat distribution modelling for reintroduction of Ilex khasiana Purk.,a critically endangered tree species of northeastern India[J].Ecological Engineering,2012,40:37- 43.
    [14] JIANG Y,WANG T,BIE C A J M,et al.Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts[J].Ecological Indicators,2014,38(3):72- 80.
    [15] 郭水良,高平磊,娄玉霞.应用MaxEnt模型预测检疫性杂草毒莴苣在我国的潜分布范围[J].上海交通大学学报:农业科学版,2011,29(5):15- 19.
    [16] 车乐,曹博,白成科,等.基于maxent和arcgis对太白米的潜在分布预测及适宜性评价[J].生态学杂志,2014,33(6):1623- 1628.
    [17] ASHFORD O S,DAVIES A J,JONES D O B.Deep-sea benthic megafaunal habitat suitability modelling:a global-scale maximum entropy model for Xenophyophores[J].Deep Sea Research Part I Oceanographic Research Papers,2014,94:31- 44.
    [18] GOMEZ J J,CASSINI M H.Environmental predictors of habitat suitability and biogeographical range of Franciscana dolphins (Pontoporia blainvillei)[J].Global Ecology and Conservation,2015,3:90- 99.
    [19] CRANE D P,FARRELL J M,KAPUSCINSKI K L.Identifying important micro-habitat characteristics of muskellunge spawning locations in the upper Niagara River[J].Journal of Great Lakes Research,2014,40(2):325- 335.
    [20] BARNES M A,JERDE C L,WITTMANN M E,et al.Geographic selection bias of occurrence data influences transferability of invasive Hydrilla verticillata distribution models[J].Ecology and Evolution,2014,4(12):2584- 2593.
    [21] 贾静,张树兴.云南生物多样性的特点与保护现状[J].林业经济,2006(13):50- 54.
    [22] 云南省生物多样性保护联席会议.云南省生物多样性保护战略与行动计划[M].昆明:云南省环境保护厅,2013.
    [23] 中国科学院植物研究所.中国高等植物图鉴[M].北京:科学出版社,1972.
    [24] 中科院“中国植物志”编辑委员会.中国植物志[M].北京:科学出版社,2013.
    [25] 西双版纳州民族药调研办公室.西双版纳傣药志[M].西双版纳州:州卫生局出版社,1980.
    [26] 车仁宇,赵晶,王圣燕.高效液相法测定水杨柳提取物中水柳皂苷的含量[J].第三军医大学学报,2009,31(22):2275- 227.
    [27] KUMAR,B.HOMONOIA R.Willow-Leaved water croton[J/OL].The IUCN Red List of Threatened Species,2013.http://dx.doi.org/10.2305/IUCN.UK.2011- 1.RLTS.T176888A7325105.en.
    [28] 韦发南.广西大戟科一些属的分类简志[J].广西植物,1992,12(3):193- 208.
    [29] PHILLIPS S J.Dudík M Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation[J].Ecography,2008,31(2):161- 175.
    [30] COHEN J.A coefficient of agreement for nominal scales[J].Educational and Psychological Measurement,1960,20:37- 46.
    [31] ALLOUCHE O,TSOAR A,KADMON R.Assessing the accuracy of species distribution models:prevalence,kappa and the true skill statistic (TSS)[J].Journal of Ecology,2006,43:1223- 1232.
    [32] HANLEY J A,MCNEIL B J.The meaning and use of the area under a receiver operating characteristic (ROC) curve[J].Radiology,1982,143:29- 36.
    [33] VANAGAS G.Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J].Interactive Cardiovascular and Thoracic Surgery,2004,3:319- 322.
    [34] SWETS J A.Measuring the accuracy of diagnostic systems[J].Science,1988,240(4857):1285- 1293.
    [35] 王中泽,张向明,等.云南澜沧江漫湾水电站库区生态环境与生物资源[M].昆明:云南科技出版社,2000.
    [36] ZHAO Q H,LIU S L,DENG L,et al.Soil degradation associated with water-level fluctuations in the Manwan Reservoir,Lancang River Basin[J].Catena,2014,113:226- 235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700