管径与蒸发段壁温对重力热管流型影响的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Influence of Pipe Diameter & Wall Temperature of Evaporator on Flow Pattern of Gravity Heat Pipe
  • 作者:张文涛 ; 辛旋 ; 李庆领
  • 英文作者:Zhang Wentao;Xin Xuan;Li Qingling;
  • 关键词:重力热管 ; 流型 ; 数值模拟
  • 英文关键词:Gravity Heat Pipe;;Flow Pattern;;Numerical Simulation
  • 中文刊名:JXZG
  • 英文刊名:Machinery
  • 机构:青岛科技大学机电工程学院;
  • 出版日期:2018-10-20
  • 出版单位:机械制造
  • 年:2018
  • 期:v.56;No.650
  • 语种:中文;
  • 页:JXZG201810008
  • 页数:4
  • CN:10
  • ISSN:31-1378/TH
  • 分类号:34-37
摘要
以铜-水重力热管为研究对象,基于流体体积模型,对在不同管径和不同蒸发段壁温下的热管流型进行数值模拟研究。研究结果表明:随着管径增大,蒸发段截面含气率降低,重力热管内较难聚合大气泡,流型以泡状流为主;随着蒸发段壁温升高,泡状流聚合成弹状流的位置前移,且弹状流沿管程方向更易聚合为块状流;蒸发段截面含气率沿管程方向总体呈递增趋势;相对于蒸发段壁温,管径对气液两相流的流型影响更为明显。
        Taking the copper-water gravity heat pipe as the research object, based on the fluid volume model, the numerical simulation of the heat pipe flow pattern under different pipe diameters and different wall temperatures of evaporator was carried out. The findings show that as the pipe diameter increases, the void factor of the evaporator decreases, and it is difficult to polymerize large bubbles in the gravity heat pipe, and the flow pattern is dominated by bubble flow. As the wall temperature of the evaporator increases,the position where the bubble flow is polymerized into a slug flow shifts forward, and the slug flow is more easily polymerized into a massive flow along the tube pass. The void fraction of the evaporator has an increasing trend along the tube pass. In respect of the wall temperature of the evaporator, the pipe diameter has more obvious influence on the flow pattern of the gas-liquid two-phase flow.
引文
[1]GAUGLER R S.Heat Transfer Device:US 2350348[P].1944-06-06.
    [2]战洪仁,李春晓,王立鹏,等.基于VOF模型对重力热管内部沸腾冷凝过程的仿真模拟[J].冶金能源,2016,35(1):30-34.
    [3]郝俊娇,潘日,周刚,等.高热流密度电子元件中热管散热技术的进展[J].化工进展,2015,34(5):1220-1224.
    [4]王红涛,李正茂,时振堂.热管技术在烟气余热利用上的应用研究[J].当代化工,2015,44(6):1324-1326.
    [5]张涛.重力热管在太阳能光电光热利用中的实验和理论研究[D].合肥:中国科学技术大学,2013.
    [6]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002.
    [7]XIAO N,KHONSARI M M.Improving Bearings Thermal and Tribological Performance with Built-In Heat Pipe[J].Tribology Letters,2015,57(3):31.
    [8]ALIZADEHDAKHEL A,RAHIMI M,ALSAIRAFI A A.CFDModeling of Flow and Heat Transfer in a Thermosyphon[J].International Communications in Heat and Mass Transfer,2010,37(3):312-318.
    [9]SCHEPPER S C K D,HEYNDERICKX G J,MARIN G B.CFD Modeling of All Gas-liquid and Vapor-liquid Flow Regimes Predicted by the Baker Chart[J].Chemical Engineering Journal,2008,138(1-3):349-357.
    [10]姜正良,张劲松.毛细管设计计算微分方程数值解[J].流体工程,1992,20(3):59-62.
    [11]袁达忠,马学虎,房正.两相闭式热虹吸管的流动与传热特性研究[J].高校化学工程学报,2008,22(4):557-562.
    [12]WANG X Y,XIN G M,TIAN F Z,et al.Start-up Behavior of Gravity Heat Pipe with Small Diameter[J].CIESC Journal,2012,63(S1):94-98.
    [13]朱红钧,林元华,谢龙汉.Fluent 12流体分析及工程仿真[M].北京:清华大学出版社,2011.
    [14]杨海滨.分离式热管蒸发段沸腾换热数值模拟研究[D].济南:山东大学,2017.
    [15]战洪仁,吴众,惠尧,等.基于VOF模型的倾角对重力热管性能影响数值研究[J].热力发电,2017,46(6):40-45.
    [16]郭建章,吕伟永.新型卧式环流除尘器内湍流特性数值模拟[J].机械制造,2017,55(10):53-57.葺

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700