汽油机GPF碳载量模型和再生策略的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Soot Model and Regeneration Strategy of Gasoline Particulate Filter
  • 作者:范明哲 ; 张宾 ; Sterzer ; Alexander ; Sokolov ; Dimitri
  • 英文作者:FAN Mingzhe;ZHANG Bin;STERZER AlexANDer;SOKOLOV Dimitri;Bosch Engineering Technology Division Bosch China Investment Ltd.;Bosch Engineering GmbH;
  • 关键词:汽油机 ; GPF ; 碳载量模型 ; 再生策略
  • 英文关键词:gasoline engine;;GPF;;soot model;;regeneration strategy
  • 中文刊名:SDNR
  • 英文刊名:Internal Combustion Engine & Powerplant
  • 机构:博世(中国)投资有限公司博世工程技术事业部;BoschEngineeringGmbH;
  • 出版日期:2018-12-15
  • 出版单位:内燃机与动力装置
  • 年:2018
  • 期:v.35;No.168
  • 语种:中文;
  • 页:SDNR201806001
  • 页数:11
  • CN:06
  • ISSN:37-1445/TK
  • 分类号:5-14+29
摘要
针对某V型六缸GDI机械增压汽油机,搭建基于Matlab Simulink平台的颗粒捕集器(gasoline particulate filter,GPF)碳载量模型,通过试验数据对模型中的相关脉谱进行仿真标定;并对样机的GPF主动及被动再生策略进行研究,评价分析策略表现。模型试验验证结果表明,累碳模型的偏差值为+5.8%;主动再生模型的偏差值为+9%;被动再生(断油)模型的偏差值为+6%;综合碳载量模型的偏差值为+3%,模型精度良好。
        For a V-model 6-cylinder GDI mechanical supercharger engine, this paper establishes a GPF soot model based on Matlab Simulink, and calibrates the corresponding maps inside the model through test data. The results of model validation show that the deviation value of raw soot model is about +5.8%,the deviation value of active regeneration model is about +9%,the deviation value of passive regeneration(fuel cut-off) model is about +6%,and the deviation value of comprehensive soot model is about +3%, so the model accuracy is good. Simultaneously, this paper studies the strategies of GPF active and passive regeneration of the prototype, and evaluates their performance.
引文
[1]国家环保局,国家质量监督检验局.轻型汽车污染物排放限值及测量方法(中国第六阶段):GB 18352.6—2016[S].北京:中国环境科学出版社,2016.
    [2]潘锁柱,宋崇林,裴毅强,等.缸内直喷汽油机颗粒物粒径分布特性[J].天津大学学报(自然科学与工程技术版), 2013(7):629-634.
    [3]FANG T, WANG L, WANG Z. Particulate matter emissions from gasoline direct injection engines: research review[J].Journal of Automotive Safety and Energy, 2017,8(3): 226-238.
    [4]MAMAKOS A, STEININGER N, MARTINI G, et al. Cost effectiveness of particulate filter installation on direct injection gasoline vehicles[J].Atmospheric Environment, 2013,77(28):16-23.
    [5]CHOI K, KIM J, KO A, et al.Evaluation of time-resolved nano-particle and THC emissions of wall-guided GDI engine[R].SAE Technical Paper,2011.
    [6]帅石金,董哲林,郑荣,等.车用汽油机颗粒物生成机理及排放特性研究进展[J].内燃机学报,2016,34(2):105-116.
    [7]朱小慧,陈鹏,方俊华. 燃料特性和工况对直喷汽油机微粒排放的影响[J].上海交通大学学报,2017,51(1):69-75.
    [8]李配楠, 程晓章, 骆洪燕,等. 基于国六标准的汽油机颗粒捕集器(GPF)的试验研究[J].内燃机与动力装置, 2017, 34(1):1-5.
    [9]ITO Y,SHIMODA T,AOKI T, et al. Next generation of ceramic wall flow gasoline particulate filter with integrated three way catalyst[C].SAE Paper,2015.
    [10]温吉辉, 滕勤. 缸内直喷汽油机颗粒捕集器(GPF)技术研究进展[J].小型内燃机与车辆技术, 2016, 45(1):77-83.
    [11]MASOUDIM, HEIBEL A, THEN P. Predicting pressure drop of wall-flow diesel particulate filters-theory and experiment[C].SAE Paper,2000.
    [12]RICHTER J M, KLINGMANN R, SPIESS S, et al. Application of catalyzed gasoline particulate filters to GDI vehicle[J].Sae International Journal of Engines, 2012, 5(3):1361-1370.
    [13]SHIMODA T, ITO Y, SAITO C, et al.Potential of a low pressure drop filter concept fordirect injection gasoline engines to reduce particulate number emission[C].SAE paper,2012.
    [14]VAN NIEUWSTADT M, ULREY J. Control strategies for gasoline particulate filters[C].SAE Paper,2017.
    [15]陈京瑞,朱晓峰,张志谋,等. 缸内直喷式汽油机颗粒物捕集器最新技术发展[J].小型内燃机与车辆技术, 2017, 46(3):87-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700