复合增材制造技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and Development of Hybrid Additive Manufacturing Technology
  • 作者:杨智帆 ; 张永康
  • 英文作者:YANG Zhifan;ZHANG Yongkang;School of Electro-mechanical Engineering,Guangdong University of Technology;Guangdong Leiben Laser Technology Co., Ltd.;
  • 关键词:复合增材制造 ; 耦合工艺 ; 激光锻造
  • 英文关键词:hybrid additive manufacturing;;coupled processes;;laser forging
  • 中文刊名:DJGU
  • 英文刊名:Electromachining & Mould
  • 机构:广东工业大学机电工程学院;广东镭奔激光科技有限公司;
  • 出版日期:2019-04-20
  • 出版单位:电加工与模具
  • 年:2019
  • 期:No.346
  • 基金:国家重点研发计划(2017YFB1103600);; 国家自然科学基金资助项目(51775117)
  • 语种:中文;
  • 页:DJGU201902001
  • 页数:7
  • CN:02
  • ISSN:32-1589/TH
  • 分类号:5-11
摘要
在阐述了复合增材制造技术的含义及关键技术特征的基础上,对基于机加工的复合增材制造、基于激光辅助的复合增材制造、基于喷丸的复合增材制造、基于轧制的复合增材制造四种复合增材制造技术的特点与优势进行了总结,并介绍了一种全新的激光锻造复合增材制造技术,其可与多种增材制造复合并能有效细化晶粒、消除缺陷和重构应力分布,最后指出了复合增材制造技术在耦合机理、参数优化及装备研制方面的发展趋势。
        Based on expounding the technical meaning and key features of hybrid additive manufacturing(hybrid-AM),the features and advantages of hybrid-AM by machining,by laser processing,by shot-peering and by rolling are summarized and analyzed. Then,a new technology named hybrid-AM by laser forging is introduced,which can be coupled with other AM processes and effectively refine grains,eliminate defects and reconstruct stress distribution. Finally,the development trend of hybrid-AM technology in coupling mechanism,optimization of multi-processes parameters and equipment manufacturing is discussed.
引文
[1] GU D D,MEINERS W,WISSENBACH K,et al. Laser additive manufacturing of metallic components:materials,processes and mechanisms[J]. International materials reviews,2012,57(3):133-164.
    [2]卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.
    [3]王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
    [4] ZHANG Laichang,ATTAR H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications:a review[J]. Advanced Engineering Materials,2016,18(4):463-475.
    [5]张海鸥,向鹏洋,芮道满,等.金属零件增量复合制造技术[J].航空制造技术,2015(10):34-36.
    [6] LAUWERS B,KLOCKE F,KLINK A,et al. Hybrid processes in manufacturing[J]. CIRP Annals,2014,63(2):561-583.
    [7]张永康,张峥,关蕾,等.双激光束熔敷成形冲击锻打复合增材制造方法:201710413348.7[P]. 2017-12-15.
    [8] MERZ R,PRINZ F B,RAMASWAMI K,et al. Shape deposition manufacturing[C]//In:Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,1994:1-8.
    [9] SONG Y A,PARK S,JEE H,et al. 3D welding and milling-a direct approach for fabrication of injection molds[C]//In:Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,1999:793-800.
    [10] PRIDHAM M S,THOMSON G. Part fabrication using laser machining and welding[C]//In:Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,1993:74-80.
    [11] FLYNN J M,SHOKRANI A,NEWMAN S T,et al. Hybrid additive and subtractive machine tools-Research and industrial developments[J]. International Journal of Machine Tools and Manufacture,2016,101:79-101.
    [12] LEVY G N,SCHINDEL R,KRUTH J P. Rapid manufacturing and rapid tooling with layer manufacturing(LM)technologies,state of the art and future perspectives[J]. CIRP Annals,2003,52(2):589-609.
    [13] HUR J,LEE K,ZHU H,et al. Hybrid rapid prototyping system using machining and deposition[J]. ComputerAided Design,2002,34(10):741-754.
    [14] JENG J Y,LIN M C. Mold fabrication and modification using hybrid processes of selective laser cladding and milling[J]. Journal of Materials Processing Technology,2001,110(1):98-103.
    [15] AKULA S,KARUNAKARAN K P. Hybrid adaptive layer manufa cturing:an intelligent art of direct metal rapid tooling process[J]. Robotics and Computer-Integrated Manufacturing,2006,22(2):113-123.
    [16] KARUNAKARAN K P,SREENATHBABU A,PUSHPA V. Hybrid layered manufacturing:direct rapid metal toolmaking process[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2004,218(12):1657-1665.
    [17] KARUNAKARAN K P,SHANMUGANATHAN P V,JADHAV S J,et al. Rapid prototyping of metallic parts and moulds[J]. Journal of materials processing technology,2000,105(3):371-381.
    [18] XIONG Xinhong,ZHANG Haiou,WANG Guilan,et al.Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy[J].Robotics and Computer-Integrated Manufacturing,2010,26(4):291-295.
    [19] SREENATHBABU A,KARUNAKRAN K P,AMARNATH C. Statistical process design for hybrid adaptive layer manufacturing[J]. Rapid Prototyping Journal,2005,11(4):235-248.
    [20] CHOI D S,LEE S H,SHIN B S,et al. Development of a direct metal freeform fabrication technique using CO2laser welding and milling technology[J]. Journal of Materials Processing Technology,2001,113(1-3):273-279.
    [21] FRIEL R J,HARRIS R A. Ultrasonic additive manufacturing-a hybrid production process for novel functional products[J]. Procedia CIRP,2013,6:35-40.
    [22] KARUNAKARAN K P,SURYAKUMAR S,PUSHPA V,et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2010,26(5):490-499.
    [23] KERSCHBAUMER M,ERNST G. Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding[C]//International Congress on Applications of Lasers and Electro-Optics.LIA,2004(1):1710.
    [24] KRUTH J P,LEU M C,NAKAGAWA T. Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals,1998,47(2):525-540.
    [25] LIOU F,SLATTERY K,KINSELLA M,et al. Applications of a hybrid manufacturing process for fabrication of metallic structures[J]. Rapid Prototyping Journal,2007,13(4):236-244.
    [26] Liou F W, Choi J, Landers R G, et al. Research and development of a hybrid rapid manufacturing process[C]//Proceedings of the Solid Freeform Fabrication Symposium.University of Texas at Austin,2001:138-145.
    [27] NEWMAN S T,ZHU Z,DHOKIA V,et al. Process planning for additive and subtractive manufacturing technologies[J]. CIRP Annals,2015,64(1):467-470.
    [28] SONG Y A,PARK S. Experimental investigations into rapid prototyping of composites by novel hybrid deposition process[J]. Journal of Materials Processing Technology,2006,171(1):35-40.
    [29] ZHU Z,DHOKIA V,NEWMAN S T,et al. Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts[J]. The International Journal of Advanced Manufacturing Technology,2014,74(5-8):1115-1132.
    [30] KULKARNI P,DUTTA D. On the integration of layered manufacturing and material removal processes[J]. Journal of Manufacturing Science and Engineering,2000,122(1):100-108.
    [31] SIMHAMBHATLA S,KARUNAKARAN K P. Build strategies for rapid manufacturing of components of varying complexity[J]. Rapid Prototyping Journal,2015,21(3):340-350.
    [32] Yasa E, Kruth J P. Investigation of laser and process parameters for selective laser erosion[J]. Precision Engineering,2010,34(1):101-112.
    [33] YASA E,KRUTH J P,DECKERS J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting[J]. CIRP Annals,2011,60(1):263-266.
    [34] SHIOMI M,OSAKADA K,NAKAMURA K,et al.Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals,2004,53(1):195-198.
    [35] YASA E,KRUTH J P. Application of laser re-melting on selective laser melting parts[J]. Advances in Production Engineering and Management,2011,6(4):259-270.
    [36] QIAN Yingping,HUANG Juhua,ZHANG Haiou,et al.Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology[J]. Journal of Materials Processing Technology,2008,208(1-3):99-104.
    [37] PRINZ F B,WEISS L E. Method and apparatus for fabrication of three-dimensional metal articles by weld deposition:USCA2074742(A1)[P]. 1993-01-30.
    [38] EL-WARDANY T I,LYNCH M E,VIENS D V,et al.Turbine disk fabrication with in situ material property variation:US2014255198(A1)[P]. 2014-09-11.
    [39] KRAMER K J,BAYRAMIAN A,EL-DASHER B S,et al.System and method for enhanced additive manufacturing:US2014367894(A1)[P]. 2014-12-18.
    [40] SIDHU J,WESCOTT A D. Additive manufacturing and integrated impact post-treatment:USWO2016092253(A1)[P]. 2016-06-16.
    [41] WU Z,LI Y,ABBOTT D H,et al. Method for manufacturing objects using powder products:USCA2883188(A1)[P]. 2015-08-25.
    [42] KALENTICS N,LOG魪R,BOILLAT E. Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting:US2017087670(A1)[P]. 2017-03-30.
    [43] KALENTICS N,BOILLAT E,PEYRE P,et al. 3D laser shock peening-a new method for the 3D control of residual stresses in selective laser melting[J]. Materials and Design,2017,130:350-356.
    [44] GALE J,ACHUHAN A. Application of ultrasonic peening during DMLS production of 316L stainless steel and its effect on material behavior[J]. Rapid Prototyping Journal,2017,23(6):1185-1194.
    [45] BOOK T A,SANGID M D. Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process[J]. JOM,2016,68(7):1780-1792.
    [46] COLEGROVE P A,MARTINA F,ROY M J,et al. High pressure interpass rolling of wire+arc additively manufactured titanium components[J]. Advanced Materials Research,2014,996:694-700.
    [47] COLEGROVE P A,COULES H E,FAIRMAN J,et al.Microstructure and residual stress improvement in wire and arc additively manufactured parts through highpressure rolling[J]. Journal of Materials Processing Technology,2013,213(10):1782-1791.
    [48] MARTINA F,WILLIAMS S,COLEGROVE P. Improved microstructure and increased mechanical properties of additive manufacture produced Ti-6Al-4V by interpass cold rolling[C]//Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,2013:490-496.
    [49] MARTINA F,COLEGROVE P A,WILLIAMS S W,et al.Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A,2015,46(12):6103-6118.
    [50] ZHANG H,Rui D M,XIE Y, et al. Study on metamorphic rolling mechanism for metal hybrid additive manufacturing[C]//Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,2013:188-198.
    [51] ZHANG H,XIE Y,Rui D M, et al. Hybrid deposition and micro rolling manufacturing method of metallic parts[C]//Proceedings of the Solid Freeform Fabrication Symposium.University of Texas at Austin,2013:267-281.
    [52] XIE Y,ZHANG H,WANG G,et al. A novel metamorphic mechanism for efficient additive manufacturing of components with variable wall thickness[C]//Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin,2014:210-223.
    [53] XIE Y,ZHANG H,ZHOU F. Improvement in geometrical accuracy and mechanical property for arc-based additive manufacturing using metamorphic rolling mechanism[J].Journal of Manufacturing Science and Engineering,2016,138(11):111002.
    [54] ZHOU Xiangman,ZHANG Haiou,WANG Guilan,et al.Simulation of microstructure evolution during hybrid deposition and micro-rolling process[J]. Journal of Materials Science,2016,51(14):6735-6749.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700