基于数值定容弹方法的推力室阻尼特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Investigation of Damping Characteristics of Thruster Based on Numerical Constant-Volume Bomb
  • 作者:覃建秀 ; 张会强
  • 英文作者:QIN Jian-xiu;ZHANG Hui-qiang;China Academy of Aerospace Aerodynamics;School of Aerospace Engineering,Tsinghua University;
  • 关键词:压力振荡 ; 声学振型 ; 定容弹 ; 阻尼特性 ; 半带宽
  • 英文关键词:Pressure oscillations;;Acoustic mode;;Constant-volume bomb;;Damping characteristics;;Half-power bandwidth
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国航天空气动力技术研究院;清华大学航天航空学院;
  • 出版日期:2019-01-09 15:10
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 语种:中文;
  • 页:TJJS201907017
  • 页数:8
  • CN:07
  • ISSN:11-1813/V
  • 分类号:143-150
摘要
为确定推力室的声学振型频率及其阻尼特性,给出推力室最容易激发声学振型和最难衰减声学振型,建立了基于数值定容弹和半带宽法的推力室声学振型及其阻尼特性的数值模拟方法。对小推力姿轨控发动机推力室进行近圆周壁面的定容弹激励仿真,激发出了多模态的声学振型,其中,一阶切向振型为最容易激发振型,而一阶纵向振型为最难衰减振型。进一步讨论了推力室构型参数对其阻尼特性的影响,结果表明:随推力室内径增大,纵向振型得到抑制,而切向振型变得不易衰减;随推力室收缩比增加,一阶切向振型半带宽先增大后保持不变;随推力室圆柱段长度增加,各振型半带宽没有明显的变化趋势。
        In order to determine characteristic frequencies of acoustic modes of the chamber and their damping characteristics,the corresponding numerical simulation methods based on numerical constant-volume bomb and half-power bandwidth method were developed. Thereby,the most inspirable acoustic mode and the acoustic mode that is the most difficult to be attenuated can be both achieved. Then damping characteristic of a small-thrust attitude and orbit control thruster was predicted by imposing numerical constant-volume bomb at the region near the side-wall. Multi-acoustic modes are stimulated,in which the first tangential mode is the most inspirable acoustic mode,while the first longitudinal mode is the one that is the most difficult to be attenuated. Furthermore,effects of configuration parameters of chamber on its damping characteristic were discussed. With the increase of the diameter of chamber,longitudinal modes are suppressed,while tangential modes are more difficult to be attenuated. With the increase of contraction ratio of chamber,half-power bandwidth of the first tangential mode increases first and then keeps almost the same. With the increase of the length of the cylindrical part,there isn't obvious trend of half-power bandwidth of each excited mode.
引文
[1]Harrje D T,Reardon F H.Liquid Propellant Rocket Combustion Instability[M].Washington,DC:NASA,1972.
    [2]Yang V,Anderson W E.Liquid Rocket Engine Combustion Instability[M].Washington,DC:AIAA,1995.
    [3]Shimizu T,Hori D.Acoustic Structure and Damping Estimation of a Cylinder Rocket Chamber During Oscillation[R].AIAA 2012-4206.
    [4]Kim S K,Kim H J,Seol W S,et al.Acoustic Stability Analysis of Liquid Propellant Rocket Combustion Chambers[R].AIAA 2004-4142.
    [5]Kim H J,Lee K J,Seo S,et al.Stability Rating Tests of KSR-III Baffled Chamber Using Pulse Gun[R].AIAA 2004-3364.
    [6]Park J H,Sohn C H.On Optimal Design of Half-Wave Resonators for Acoustic Damping in an Enclosure[J].Journal of Sound and Vibration,2009,319:807-821.
    [7]Sohn C H,Park J H.A Comparative Study on Acoustic Damping Induced by Half-Wave,Quarter-Wave,and Helmholtz Resonators[J].Aerospace Science and Technology,2011,15:606-614.
    [8]Kim H J,Cha J P,Song J K,et al.Geometric and Number Effect on Damping Capacity of Helmholtz Resonators in a Modal Chamber[J].Journal of Sound and Vibration,2010,329:3266-3279.
    [9]Rogerio C,Cristicane A M,Pedro T L.Acoustic Instabilities Control Using Helmholtz Resonators[J].Applied Acoustics,2014,77:1-10.
    [10]Sohn C H,Park I S,Kim S K,et al.Acoustic Tuning of Gas-Liquid Scheme Injectors for Acoustic Damping in a Combustion Chamber of a Liquid Rocket Engine[J].Journal of Sound and Vibration,2007,34:793-810.
    [11]Kim S K,Choi H S,Kim H J,et al.Finite Element Analysis for Acoustic Characteristics of Combustion Stabilization Devices[J].Aerospace Science and Technology,2015,42:229-240.
    [12]Searby G,Aurelie N,Habiballah M,et al.Prediction of the Efficiency of Acoustic Damping Cavities[J].Journal of Propulsion and Power,2008,24(3):516-523.
    [13]Park I S,Sohn C H.Nonlinear Acoustic Damping Induced by a Half-Wave Resonator in an Acoustic Chamber[J].Aerospace Science and Technology,2010,14:442-450.
    [14]ZHANG Hui-qiang,GA Yong-jing,WANG Bing,et al.Analysis of Combustion Instability via Constant Volume Combustion in a LOX/RP-1 Bipropellant Liquid Rocket Engine[J].Science China Technological Sciences,2012,55(4):1066-1077.
    [15]Wang T S,Chen Y S.Unified Navier-Stokes Flowfield and Performance Analysis of Liquid Rocket Engines[J].Journal of Power and Propulsion,1993,9(5):678-685.
    [16]Patankar S V.Numerical Heat Transfer and Fluid Flow[M].Washington,DC:Hemisphere,1980.
    [17]覃建秀,张会强,王兵.基于数值定容弹方法的推力室声学特性研究[J].推进技术,2018,39(2):366-373.(QIN Jian-xiu,ZHANG Hui-qiang,WANGBing.Investigation on Acoustic Characteristic of Thruster with Numerical Constant-Volume Bomb Method[J].Journal of Propulsion Technology,2018,39(2):366-373.)
    [18]QIN Jian-xiu,ZHANG Hui-qiang,WANG Bing.Numerical Evaluation of Acoustic Characteristics and Their Damping of a Thrust Chamber[J].Chinese Journal of Aeronautics,2018,31(3):470-480.
    [19]Buffum F G,Dehority G L,Slates R O,et al.Acoustic Attenuation Experiments on Subscale,Cold-Flow Rocket Motors[J].AIAA Journal,1967,5(2):272-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700