外源褪黑素对干旱胁迫下番茄叶片光合特性和抗氧化酶系统的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of Exogenous Melatonin on Photosynthetic Characteristics and Antioxidant Systems of Tomato Leaves under Water Stress
  • 作者:李琳琳 ; 宋彦涛 ; 金华 ; 邹吉祥
  • 英文作者:LI Lin-lin;SONG Yan-tao;JIN Hua;ZOU Ji-xiang;School of Environment and Resources,Dalian Minzu University;
  • 关键词:干旱 ; 光合 ; 抗氧化 ; 褪黑素
  • 英文关键词:drought;;photosynthesis;;antioxidant;;melatonin
  • 中文刊名:DLMY
  • 英文刊名:Journal of Dalian Minzu University
  • 机构:大连民族大学环境与资源学院;
  • 出版日期:2019-01-15
  • 出版单位:大连民族大学学报
  • 年:2019
  • 期:v.21
  • 基金:辽宁省自然科学基金资助项目(20170540189,201800623)
  • 语种:中文;
  • 页:DLMY201901007
  • 页数:6
  • CN:01
  • ISSN:21-1600/G4
  • 分类号:36-41
摘要
褪黑素可以提高番茄抗旱的光合特性,对于保证番茄优质高产具有重要意义。通过在干旱处理基础上叶片外施褪黑素,证明了褪黑素对番茄抗旱光合特性有正面影响,增强在干旱胁迫下番茄的光合速率和水分利用率,降低水分胁迫对光系统Ⅱ的伤害。外源施用褪黑素可通过提高番茄叶片内抗氧化酶系统的活性来有效降低由水分胁迫引起的ROS含量增加,从而缓解干旱引起的氧化胁迫和细胞膜的损伤。为提高番茄抗旱机制,稳定番茄产量,提高番茄果实品质提供思路和方法。
        It is meaningful to study the influence of exogenous melatonin on photosynthesis of tomato leaves under drought stress to insure tomato yield. In this study,leaf sprays with melatonin have positive effects on photosynthetic characteristics of tomato leaves under drought stress. And it is showed a trend of increasing photosynthetic rate and water use efficiency,which can reduce the damage of drought to PSII. Melatonin effectively reduced ROS content of tomato leaves under drought and relieved the cellular membrane damage by increasing the activities of antioxidant systems. Our work also provides a new idea and method to improve drought tolerance of tomato,stabilize the yield and improve the quality.
引文
[1]武利明,张喜春,肖光辉.环境因子对番茄生长发育的影响[J]. Agricultural Science&Technology,2015,30(2):214-219.
    [2]韩国君,陈年来,黄海霞,等.番茄叶片光合作用对快速水分胁迫的响应[J].应用生态学报,2013,24(4):1017-1022.
    [3] ARNAO M B,HERNNDEZ-RUIZ J. Functions of melatonin in plants:a review[J]. J Pineal Res,2015,59(2):133-150.
    [4]HATTORI A,MIGITAKA H,IIGO M,et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochem Mol Biol Int,1995,35(3):627-634.
    [5]BYEON Y,PARK S,LEE H Y,et al. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase[J]. J Pineal Res,2014,56(3):275-282.
    [6]PARK S,LEE D E,JANG H,et al. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress[J]. J Pineal Res,2013,54(3):258-263.
    [7] LIU N,JIN Z Y,WANG S S,et al. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato[J]. Sci Hortic,2015,181:18-25.
    [8]王英利,王英娟,郝建国,等.褪黑素对绿豆在增强UV-B辐射下的防护作用[J].光子学报,2009,38(10):2629-2633.
    [9]WEI W,LI Q T,CHU Y N,et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J]. J Exp Bot,2015,66(3):695-707.
    [10]张海军.褪黑素处理对氯化钠胁迫下黄瓜种子萌发的影响及其分子机制[D].北京:中国农业大学,2016
    [11] ARNAO M B,HERNNDEZ-RUIZ J. Chemical stress by different agents affects the melatonin content of barley roots[J]. J Pineal Res,2009,46(3):295-299.
    [12]TURK H,ERDAL S,GENISEL M,et al. The regulatory effect of melatonin on physiological,biochemical and molecular parameters in cold-stressed whet seedlings[J]. Plant Growth Regul,2014,74:139-152.
    [13]丁飞.褪黑素缓解番茄低温与水分胁迫机理研究[D].杨凌:西北农林科技大学,2017.
    [14]SHI H,JIANG C,YE T,et al. Comparative physiological,metabolomic,and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in Bermuda grass[Cynodon dactylon(L). Pers.] by exogenous melatonin[J]. J Exp Bot,2015,66:681-694.
    [15]WEI W,LI Q T,CHU Y N,et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J]. J Exp Bot,2015,66:695-707.
    [16]ZHANG H J,ZHANG N,YANG R C,et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems,ABA and GA4 interaction in cucumber(Cucumis sativus L.)[J]. J Pineal Res,2014,57:269-279.
    [17]HERNNDEZ-RUIZ J,CANO A,ARNAO M B. Melatonin:a growth stimulating compound present in lupin tissues[J]. Planta,2004,220(1):140-144.
    [18]KIM M,SEO H,PARK C,et al. Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize[J]. J Plant Physiol,2016,190:67-71.
    [19]PATTERSON B D,MAC R E,FERGUSON I B. Estimation of hydrogen peroxide in plant extracts using titanium IV[J]. Anal Biochem,1984,139:487-492.
    [20]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55-57.
    [21]赵卫杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [22]杜永吉,于磊,孙吉雄,等.自然降温过程中不同结缕草品种电解质渗透率的动态变化[J].草业科学,2008,25(8):121-125.
    [23]朱学明,史祥鹏,雍道敬,等.内生放线菌A-1诱导苹果对炭疽叶枯病的抗性[J].植物生理学报,2015,51(6):949.
    [24]周小婷.外源褪黑素对盐胁迫下生菜和番茄幼苗的光合作用调控机制[D].杨凌:西北农林科技大学,2017.
    [25]汪本福,黄金鹏,杨晓龙,等.干旱胁迫抑制作物光合作用机理研究进展[J].湖北农业科学,2014,53(23):5628-5632.
    [26]许大全.光合速率[M].上海:上海科学出版社,2002.
    [27]任磊,赵夏陆,许靖,等. 4种茶菊对干旱胁迫的形态和生理响应[J].生态学报,2015,35(15):5131-5139.
    [28]王学文,付秋实,王玉珏,等.水分胁迫对番茄生长及光合系统结构性能的影响[J].中国农业大学学报,2010,15(1):7-13.
    [29]田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用[J].植物生理学报,2005,41(2):235-241.
    [30]王允,张逸,刘灿玉,等.干旱胁迫下外源ABA对姜叶片活性氧代谢的影响[J].园艺学报,2016,43(3):587-594.
    [31]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7):1379-1387.
    [32]白英俊,李国瑞,黄凤兰,等.活性氧与植物抗氧化系统研究进展[J].安徽农业科学,2017,45(36):1-3.
    [33]李孟奇.番茄中油菜素内酯缓解氧化锌纳米颗粒胁迫及褪黑素在硒诱导镉胁迫抗性中的作用机理研究[D].杭州:浙江大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700