雷诺数变化对翼型边界层发展及失速特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Influence of Reynolds Number on Boundary Layer Development and Stall Characteristics of Airfoil
  • 作者:张彦军 ; 赵轲 ; 张同鑫 ; 陈利丽
  • 英文作者:Zhang Yanjun;Zhao Ke;Zhang Tongxin;Chen Lili;The General Configuration and Aerodynamics Design and Research Department, The First Aircraft Institute;
  • 关键词:雷诺数 ; 翼型失速 ; 边界层 ; 转捩 ; 分离泡 ; 湍流模型
  • 英文关键词:Reynolds number;;airfoil stall;;boundary layer;;transition;;separation bubble;;turbulence model
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:第一飞机设计研究院总体气动设计研究所;
  • 出版日期:2019-05-28
  • 出版单位:航空工程进展
  • 年:2019
  • 期:v.10;No.39
  • 语种:中文;
  • 页:HKGC201903005
  • 页数:11
  • CN:03
  • ISSN:61-1479/V
  • 分类号:35-45
摘要
翼型失速及其边界层发展是飞行器设计中的基础科学问题,而雷诺数变化对其影响很大。针对后缘失速翼型,采用Menter k-ω SST模型及耦合扰动放大因子输运方程的转捩模型,进行雷诺数变化对层流-湍流转捩边界层特性和失速特性的影响分析。结果表明:雷诺数增大时,对于转捩边界层,当地涡量雷诺数增大,转捩前移且分离泡减小,流动能量耗散减小,翼型整体表面剪切效应增强,动能更充沛,流动自持能力增强,压力分布可以维持较长距离的梯度抵抗分离能力增强;因此雷诺数增大使翼型失速迎角提高、升力系数增加。
        Airfoil stall and its boundary layer development are fundamental scientific issues in aircraft design. For the trailing edge stall airfoil, The transition model coupled the Mentor k-ω SST model with the disturbance amplification factor transport equation is used to analyze the influence of Reynolds number variation on the laminar-turbulent transition boundary layer characteristics and stall characteristics. The results show that when the Reynolds number increases, the local vorticity Reynolds number increases, the transition position moves forward and the separation bubble decreases, the flow energy dissipation decreases, and the overall surface shear effect of the airfoil increases. The kinetic energy is more abundant, the flow self-sustaining ability is enhanced, and the pressure distribution can maintain the gradient resistance of the longer distance to enhance the separation resistant ability. Therefore, the increase of the Reynolds number makes the increase of the airfoil stall angle and the lift coefficient.
引文
[1] Jacobs E N.The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel[R].NACA-TR-391,US:NACA,1931.
    [2] Jacobs E N,Sherman A.Airfoil section characteristics as affected by variations of the Reynolds number[R].NACA-TR-58,US:NACA,1937.
    [3] Lissaman.Low reynolds number airfoils[J].Annual Review of Fluid Mechanics,1983,15:223-239.
    [4] Michael V O,Brian R M,Ernest S H.Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities[C]//35th AIAA Fluid Dynamics Confe-rence and Exhibit.Toronto:AIAA,2005:5149-5155.
    [5] Hu H,Yang Z.An experimental study of the laminar flow separation on a low-Reynolds-number airfoil[J].Journal of Fluids Engineering,2008,130(5):589-603.
    [6] Yamato H,Asai S,Sunada Y,et al.Experiments on a dynamic bubble burst control plate for airfoil stall suppression[C]//2018 Flow Control Conference.Atlanta:AIAA,2018:3685-3694.
    [7] Wang N,Gao C.Variable Reynolds number experimental study on aerodynamic characteristic of supercritical airfoil RAE2822[J].Applied Mechanics and Materials,2013,420:42-46.
    [8] 孙智伟,白俊强,高正红,等.现代超临界翼型设计及风洞试验[J].航空学报,2015,36(3):804-818.Sun Zhiwei,Bai Junqiang,Gao Zhenghong ,et al.Design and wind tunnel test investigation of the modern supercritical airfoil[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):804-818.(in Chinese)
    [9] Aranake A C,Lakshminarayan V K,Duraisamy K.Assessment of transition model and CFD methodology for wind turbine flows[C]//42nd AIAA Fluid Dynamics Conference and Exhibit.New Orleans:AIAA,2012:2720-2728.
    [10] Ke J,Edwards J R.Numerical simulations of turbulent flow over airfoils near and during static stall[J].Journal of Aircraft,2017,54(5):1960-1978.
    [11] 冯涛,程洪贵,杨琳,等.边界层特性对雷诺数变化的敏感性分析[J].推进技术,2005,26(4):328-334.Feng Tao,Cheng Honggui,Yang Lin,et al.Receptivity of boundary layer to Reynolds number[J].Journal of Propulsion Technology,2005,26(4):328-334.(in Chinese)
    [12] 靳允立,胡骏.翼型失速及雷诺数变化对风力机气动性能影响的数值研究[J].太阳能学报,2009,30(9):1280-1285.Jin Yunli,Hu Jun.Numerical research of the influence of airfoil stall and Reynolds number change on wind turbine aerodynamic performance[J].Acta Energiae Solaris Sinica,2009,30(9):1280-1285.(in Chinese)
    [13] 王强,赵宁,王同光.考虑转捩的风力机翼型动态失速数值模拟[J].太阳能学报,2012,33(1):113-119.Wang Qiang,Zhao Ning,Wang Tongguang.Numerical simulation of wind turbine airfoil dynamic stall with transition modeling[J].Acta Energiae Solaris Sinica,2012,33(1):113-119.(in Chinese)
    [14] 袁尚科.风力机失速特性研究[D].兰州:兰州理工大学,2016.Yuan Shangke.Study on stall of wind turbine[D].Lan-zhou:Lanzhou University of Technology,2016.(in Chinese)
    [15] Menter F R.Two equation eddy viscosity turbulence model for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [16] Wilcox D C.Reassessment of the scale-determining equation for advanced turbulence models[J].AIAA Journal,1988,26(11):1299-1310.
    [17] Launder B E,Sharma B I.Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disk[J].Letters in Heat and Mass Transfer,1974,1(1):131-138.
    [18] Coder J G,Maughmer M D.Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J].AIAA Journal,2014,52(11):2506-2512.
    [19] Coder J G,Maughmer M D.Application of the amplification factor transport transition model to the shear stress transport model[C]//53rd AIAA Aerospace Sciences Mee-ting.Kissimmee:AIAA,2015:588-596.
    [20] Somers D M.Design and experimental results for a natural laminar flow airfoil for general aviation applications[R].NASA-TP-1861,US:1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700