西范坪矿区土壤铜元素的高光谱响应与反演模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectral Response and Inversion Models for Prediction of Total Copper Content in Soil of Xifanping Mining Area
  • 作者:滕靖 ; 何政伟 ; 倪忠云 ; 赵印泉 ; 张志
  • 英文作者:TENG Jing;HE Zheng-wei;NI Zhong-yun;ZHAO Yin-quan;ZHANG Zhi;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology);Key Laboratory of Geoscience Spatial Information Technology,Ministry of Land and Resources;College of Earth Sciences,Chengdu University of Technology;College of Tourism and Urban-Rural Planning,Chengdu University of Technology;
  • 关键词:土壤地球化学 ; 光谱变换 ; 特征变量选取 ; 高光谱反演模型 ; 西范坪矿区
  • 英文关键词:Soil geochemistry;;Spectral transformation;;Characteristic variable selection;;Hyperspectral inversion model;;Xifanping mining area
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:地质灾害防治与地质环境保护国家重点实验室(成都理工大学);地学空间信息技术国土资源部重点实验室;成都理工大学地球科学学院;成都理工大学旅游与城乡规划学院;
  • 出版日期:2016-11-15
  • 出版单位:光谱学与光谱分析
  • 年:2016
  • 期:v.36
  • 基金:中国地质调查局地质矿产调查评价国家专项工作项目(12120113095400)资助
  • 语种:中文;
  • 页:GUAN201611040
  • 页数:6
  • CN:11
  • ISSN:11-2200/O4
  • 分类号:196-201
摘要
为解决传统的土壤地球化学测量方法成本高、效率低等问题,研究了利用可见-近红外光谱技术检测土壤重金属含量的简易方法。研究对西范坪矿区土壤反射光谱进行微分、连续统去除等六种变换,利用逐步回归法和皮尔逊相关系数选出对土壤铜含量敏感的特征波段,组成综合特征变量集,再应用不同的特征变量选取方法和参数建立估算模型并检验。结果表明:不同的光谱变换方法对土壤铜含量信息提取能力不同,每种光谱变换都对应特定的敏感波谱区间;基于综合光谱变换信息建立的土壤铜含量反演模型精度优于基于单种光谱变换信息建立的模型;利用综合光谱变换信息建立土壤铜含量反演模型,后向剔除法优于前向引入法和逐步回归法,当Removal取0.20时得到最优回归模型,其模型决定系数R2和预测模型决定系数R_(pre)~2分别达到了0.851和0.830,建模均方根误差RMSEC和预测均方根误差RMSEP分别为0.349和0.468mg·kg~(-1),能较好地检测土壤铜含量,同时为其他土壤重金属元素的光谱检测提供了思路。
        In order to solve the problem of high cost and low efficiency by using the traditional soil geochemical survey methods,this paper studied the simple detection method of soil heavy metal content with visible and near-infrared reflectance spectroscopy.The study collected visible and near-infrared reflectance spectroscopy of soil samples in Xifanping mining area;then treated the reflectance spectroscopy with six mathematic changes such as differentials and continuum removal in advance;the next step was to select characteristic wavelengths that were sensitive to soil copper content by using stepwise regression method and Pearson correlation coefficient as set of comprehensive characteristic variables;finally,utilized different methods and parameters of characteristic variable selection to build the soil total copper content models and tested them.Results showed that:to extract the information of copper content in soil,the performance of different spectral transform methods varied,and each spectrum transform method corresponded to its certain sensitive spectral ranges;the inversion models based on the integrated spectrum transform information were better than that based on only one kind of spectrum transform information;as for establishing the prediction model of soil copper content by using the integrated spectrum transform information,backward elimination was better than forward selection and stepwise selection,and when the Removal is 0.20,the optimum model was obtained,its coefficients of determination(R~2)and determination coefficients of prediction(R2pre)reached 0.851 and 0.830,root mean square error of calibration(RMSEC)and root mean square error of prediction(RMSEP)were 0.349 and 0.468mg·kg~(-1).The model has a good precision,and it provides a train of thought for the detection of other soil heavy metal elements with visible and near-infrared reflectance spectroscopy.
引文
[1]YANG Zhen,HU Guang-dao,MEI Hong-bo(杨震,胡光道,梅红波).Science Technology and Engineering(科学技术与工程),2015,15(9):32.
    [2]Liu Yaolin,Li Wei,Wu Guofeng,et al.Geo-spatial Information Science,2011,14(1):10.
    [3]Stenberg B,Rossel R A V,Mouazen A M,et al.Advances in Agronomy,2010,107:163.
    [4]Shi Tiezhu,Chen Yiyun,Liu Yaolin,et al.Journal of Hazardous Materials,2014,265:166.
    [5]Song Yinxian,Li Fengling,Yang Zhongfang,et al.Applied Clay Science,2012,64:75.
    [6]Sonia G,Noamen R,Saadi A.Journal of Geographic Information System,2012,4:242.
    [7]Pascucci S,Belviso C,Cavalli R M,et al.Remote Sensing of Environment,2012,123:139.
    [8]Summers D,Lewis M,Ostendorf B,et al.Ecological Indicators,2011,11(1):123.
    [9]Moros J,de Vallejuelo S F O,Gredilla A,et al.Environmental Science&Technology,2009,43(24):9314.
    [10]Choe E,van der Meer F D,van Ruitenbeek F J A,et al.Remote Sensing of Environment,2008,112(7):3222.
    [11]Siebielec G,McCarthy G W,Stuczynski T I,et al.Journal of Environmental Quality,2004,33:2056.
    [12]Malley D F,Williams P C.Environmental Science&Technology,1997,31(12):3461.
    [13]Kemper T,Sommer S.Environmental Science&Technology,2002,36(12):2742.
    [14]WU Ming-zhu,LI Xiao-mei,SHA Jin-ming(吴明珠,李小梅,沙晋明).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2014,34(6):1660.
    [15]XU Ming-xing,WU Shao-hua,ZHOU Sheng-lu,et al(徐明星,吴绍华,周生路,等).Journal of Infrared and Millimeter Waves(红外与毫米波学报),2011,30(2):109.
    [16]WANG Wei,SHEN Run-ping,JI Cao-xiang(王维,沈润平,吉曹翔).Remote Sensing Technology and Application(遥感技术与应用),2011,26(3):348.
    [17]ZOU Xiaobo,ZHAO Jiewen,Malcolm J W,et al.Anal.Chim.Acta,2010,667(1-2):14.
    [18]Whittingham M J,Stephens P A,Bradbury R B,et al.Journal of Animal Ecology,2006,75:1182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700