用户名: 密码: 验证码:
沾化凹陷孤岛西部斜坡带沙三段重力流沉积特征与源—汇体系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Depositional Characteristics and Source to Sink Systems of Gravity Flow of the Third Member of Shahejie Formation in Gudao West Slope Zone of Zhanhua Sag,Bohai Bay Basin,China
  • 作者:袁静 ; 钟剑辉 ; 宋明水 ; 张宇 ; 向奎 ; 赵永福 ; 俞国鼎 ; 李欣尧
  • 英文作者:YUAN Jing;ZHONG JianHui;SONG MingShui;ZHANG Yu;XIANG Kui;ZHAO YongFu;YU GuoDing;LI XinYao;School of Geosciences in China University of Petroleum;Evalution and Detection Technology Laboratory of Marine Resources,Qingdao National Laboratory for Marine Science and Technology;Shengli Oilfield,SINOPEC;Department of Exploration of Oilfield Bureau,SINOPEC Group;
  • 关键词:碎屑流 ; 异重流 ; 滑塌 ; 源—汇体系 ; 斜坡带 ; 沙三段 ; 沾化凹陷
  • 英文关键词:debris flow;;hyperpycnal flow;;slump;;source-to-sink system;;slope zone;;the third member of Shahejie Formation;;Zhanhua sag
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:中国石油大学(华东)地球科学与技术学院;青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室;中石化胜利油田分公司;中石化油田部勘探处;
  • 出版日期:2018-03-30 09:51
  • 出版单位:沉积学报
  • 年:2018
  • 期:v.36
  • 基金:山东省重点研发计划项目(2017CXGC1608)~~
  • 语种:中文;
  • 页:CJXB201803010
  • 页数:15
  • CN:03
  • ISSN:62-1038/P
  • 分类号:119-133
摘要
以岩芯观察、粒度分析、薄片鉴定、测井资料和地震资料解释等为主要手段,研究渤海湾盆地沾化凹陷孤岛西部斜坡带沙三段主要沉积物重力流类型及其沉积特征,探讨不同触发机制下的沉积物重力流演化过程和构造活动对重力流沉积过程及砂体展布的控制,总结源—汇耦合体系,建立斜坡带重力流砂体发育模式。结果表明:研究区沙三段沉积时期发育异重流、碎屑流、浊流、液化流和滑动—滑塌五种沉积物重力流,具有洪水型和滑塌型两种触发机制,流体演变总体处于碎屑流向浊流演化的早期阶段,推测研究区以北深水区仍发育碎屑流沉积且开始广泛发育浊流沉积。构造作用对研究区沙三段流体性质与演化、同生变形构造和重力流成因砂体的发育与分布具有明显的控制作用。总体上,研究区具有断槽沟谷、断裂坡折、断裂走向斜坡及缓坡沟谷等4种主要的源—汇耦合体系。纵向上,研究区沙三段自下而上由(半)深湖、近岸水下扇、滑塌扇沉积演变为滨浅湖、辫状河三角洲以及扇三角洲沉积;平面上,研究区东部主要发育来自孤岛凸起的扇三角洲前缘和近岸水下扇,西部主要发育来自陈家庄凸起的辫状河三角洲前缘,中部主要发育串珠状滑塌扇体。
        By employing the main techniques of core observation,grain size analysis,thin section examination,log data and seismic data interpretation etc.,the major types and sedimentary characteristics of sediment gravity flows in the third member of Shahejie Formation in Gudao west slope zone of Zhanhua sag in the Bobai Bay Basin were studied in this paper. Their control factors under different triggering mechanisms and tectonic activities over the sedimentary process of gravity flows and sand body distribution were discussed,the source-to-sink coupled systems were summarized and the development mode of gravity flow sand bodies in the slope zone were established. The results indicated that five types of sediment gravity flow,including hyperpycnal flows,debris flows,turbidity currents,fluidized flows,and slides-slumps were developed during the sedimentary period of the third member of Shahejie Formation in the study area,and involving two triggering mechanisms,namely,flood and slump. The fluid evolution was in general at the early stage of evolution from debris flow to turbidity current,and it is predicted that in the deep waters to the north of the study area,debris flow sediments were still developed and turbidity current sediments started to develop extensively. Tectonic action exerts significant control over fluid property and evolution,development and distribution of contemporaneous deformed structures and sand bodies of gravity flow origin in the third member of Shahejie formation in the study area. In general,there are four major source-to-sink systems occurred,including fault trough gully,fault slope break,fault strike slope,and gentle slope gully,respectively. Vertically,the( semi) deep lake,nearshore subaqueous fan and slump fan deposition were evolved into shore-shallow lake,braided delta and fan delta deposition from the bottom up in the third member of Shahejie Formation. On the plane,fan delta front and nearshore subaqueous fan from Gudao uplift are mainly developed in the east part of the study area whereas braided delta fronts are mainly developed in the west part of the study area,and slump fans in bead string pattern are mainly developed in the middle part of the study area.
引文
[1]石砥石.斜坡带岩性油藏的形成条件与勘探技术:以孤岛西部斜坡带沙三段为例[J].油气地质与采收率,2006,13(1):47-50.[Shi Dishi.The forming condition and exploration technology of the lithologic oil reservoir in the slope belt:Taking Es3of the West slope belt of Gudao as an example[J].Petroleum Geology and Recovery Efficiency,2006,13(1):47-50.]
    [2]肖莉.罗家地区水下冲积扇与垦西地区扇三角洲沉积特征及沉积模式对比[J].油气地质与采收率,2014,21(3):36-40.[Xiao Li.Comparison of sedimentary characteristics and sedimentary model between subaqueous alluvial fan and fan delta in Luojia and Kenxi area[J].Petroleum Geology and Recovery Efficiency,2014,21(3):36-40.]
    [3]佟彦明,韩飞,何幼斌,等.渤海湾盆地渤南洼陷古近系沙河街组三段沉积相的GIS辨析[J].古地理学报,2008,10(2):215-220.[Tong Yanming,Han Fei,He Youbin,et al.Analysis based on GIS of sedimentary facies of the Member 3 of Paleogene Shahejie Formation in Bonan sag,Bohai Bay Basin[J].Journal of Palaeogeography,2008,10(2):215-220.]
    [4]漆家福,杨桥,陆克政,等.渤海湾盆地基岩地质图及其所包含的构造运动信息[J].地学前缘,2004,11(3):299-307.[Qi Jiafu,Yang Qiao,Lu Kezheng,et al.Geologic map of sub-outcrop and its implied information of tectogenesis in Bohai Bay basin province[J].Earth Science Frontiers,2004,11(3):299-307.]
    [5]王云鹤,刘强虎,朱筱敏,等.沾化凹陷三合村洼陷古近系沙三下亚段物源体系分析[J].高校地质学报,2015,21(3):426-439.[Wang Yunhe,Liu Qianghu,Zhu Xiaomin,et al.Provenance analyses of the lower Third Member of the Paleogene Shahejie Formation in Sanhecun sub-sag,Zhanhua sag[J].Geological Journal of China Universities,2015,21(3):426-439.]
    [6]吴智平,李伟,郑德顺,等.沾化凹陷中、新生代断裂发育及其形成机制分析[J].高校地质学报,2004,10(3):405-417.[Wu Zhiping,Li Wei,Zheng Deshun,et al.Analysis on features and origins of the Mesozoic and Cenozoic faults in Zhanhua sag[J].Geological Journal of China Universities,2004,10(3):405-417.]
    [7]Middleton G V,Hampton M A.Sediment gravity flows:mechanics of flow and deposition[M]∥Middleton G V,Bouma A H.Turbidity and deep-water sedimentation:Short course lecture notes,part 1.California:Los Angeles,1973:1-38.
    [8]Middleton G V,Hampton M A.Subaqueous sediment transport and deposition by sediment gravity flows[M]//Stanley D J,Swift D J P.Marine sediment transport and environmental management.New York:John Wiley&Sons,1976:197-218.
    [9]Mulder T,Alexander J.The physical character of subaqueous sedimentary density flows and their deposits[J].Sedimentology,2001,48(2):269-299.
    [10]Mulder T,Migeon S,Savoye B,et al.Reply to discussion by Shanmugam on Mulder et al.(2001,Geo-Marine Letters 21:86-93)Inversely graded turbidite sequences in the deep Mediterranean.A record of deposits from flood-generated turbidity currents?[J].Geo-Marine Letters,2002,22(2):112-120.
    [11]Shanmugam G.50 years of the turbidite paradigm(1950s—1990s):deep-water processes and facies models:a critical perspective[J].Marine and Petroleum Geology,2000,17(2):285-342.
    [12]Shanmugam G.Deep-water processes and facies models:implications for sandstone petroleum reservoirs[M].Amsterdam:Elsevier,2006.
    [13]Mulder T,Syvitski J P M.Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J].The Journal of Geology,1995,103(3):285-299.
    [14]Mulder T,Syvitski J P M,Migeon S,et al.Marine hyperpycnal flows:initiation,behavior and related deposits.A review[J].Marine and Petroleum Geology,2003,20(6/7/8):861-882.
    [15]Parsons J D,Bush J W M,Syvitski J P M.Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J].Sedimentology,2001,48(2):465-478.
    [16]杨田,操应长,王艳忠,等.异重流沉积动力学过程及沉积特征[J].地质论评,2015,61(1):23-33.[Yang Tian,Cao Yingchang,Wang Yanzhong,et al.Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J].Geological Review,2015,61(1):23-33.]
    [17]孙福宁,杨仁超,李冬月.异重流沉积研究进展[J].沉积学报,2016,34(3):452-462.[Sun Funing,Yang Renchao,Li Dongyue.Research progresses on hyperpycnal flow deposits[J].Acta Sedimentologica Sinca,2016,34(3):452-462.]
    [18]Yoshida M,Yoshiuchi Y,Hoyanagi K.Occurrence conditions of hyperpycnal flows,and their significance for organic‐matter sedimentation in a Holocene estuary,Niigata Plain,Central Japan[J].Island Arc,2009,18(2):320-332.
    [19]王德坪.湖相内成碎屑流的沉积及形成机理[J].地质学报,1991,65(4):299-316.[Wang Deping.The sedimentation and formation mechanism of lacustrine endogenic debris flow[J].Acta Geologica Sinica,1991,65(4):299-316.]
    [20]袁静,梁绘媛,梁兵,等.湖相重力流沉积特征及发育模式:以苏北盆地高邮凹陷深凹带戴南组为例[J].石油学报,2016,37(3):348-359.[Yuan Jing,Liang Huiyuan,Liang Bing,et al.Sedimentary characteristics and development model of lacustrine gravity flow:A case study of Dainan Formation in deep sag belt of Gaoyou depression,northern Jiangsu Basin[J].Acta Petrolei Sinica,2016,37(3):348-359.]
    [21]袁静,杨学君,路智勇,等.东营凹陷盐22块沙四上亚段砂砾岩粒度概率累积曲线特征[J].沉积学报,2011,29(5):815-824.[Yuan Jing,Yang Xuejun,Lu Zhiyong,et al.Probability cumulative grain size curves in sandy conglomerate of the upper Es4in Yan 22 Block,Dongying depression[J].Acta Sedimentologica Sinica,2011,29(5):815-824.]
    [22]鲜本忠,万锦峰,姜在兴,等.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J].地学前缘,2012,19(1):121-135.[Xian Benzhong,Wan Jinfeng,Jiang Zaixing,et al.Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin:A case study from Dongying Formation in Nanpu depression[J].Earth Science Frontiers,2012,19(1):121-135.]
    [23]袁静,杜玉民,李云南.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103-106.[Yuan Jing,Du Yumin,Li Yunnan.Probability cumulative grain size curves in terrigenous depositional environments of the Paleogene in Huimin sag[J].Petroleum Exploration and Development,2003,30(3):103-106.]
    [24]Vallejo C,Tapia D,Gaibor J,et al.Geology of the Campanian M1sandstone oil reservoir of eastern Ecuador:a delta system sourced from the Amazon Craton[J].Marine and Petroleum Geology,2017,86:1207-1223.
    [25]Anthony E J,Julian M.Source-to-sink sediment transfers,environmental engineering and hazard mitigation in the steep Var River catchment,French Riviera,southeastern France[J].Geomorphology,1999,31(1/2/3/4):337-354.
    [26]Allen P A.From landscapes into geological history[J].Nature,2008,451(7176):274-276.
    [27]Leeder M R.Sedimentary basins:tectonic recorders of sediment discharge from drainage catchments[J].Earth Surface Processes and Landforms,1997,22(3):229-237.
    [28]Meade R H.Sources,sinks,and storage of river sediment in the Atlantic drainage of the United States[J].The Journal of Geology,1982,90(3):235-252.
    [29]Moore G T.Interaction of rivers and oceans:Pleistocene petroleum potential[J].AAPG Bulletin,1969,53(12):2421-2430.
    [30]Smme T O,Jackson C A L,Vaksdal M.Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Mre-Trndelag area of southern Norway:Part 1:depositional setting and fan evolution[J].Basin Research,2013,25(5):489-511.
    [31]Smme T O,Jackson C A L.Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the MreTrndelag area of southern Norway:Part 2:sediment dispersal and forcing mechanisms[J].Basin Research,2013,25(5):512-531.
    [32]Smme T O,Helland-Hansen W,Martinsen O J,et al.Relationships between morphological and sedimentological parameters in source-to-sink systems:a basis for predicting semi-quantitative characteristics in subsurface systems[J].Basin Research,2009,21(4):361-387.
    [33]Turmel D,Locat J,Parker G.Morphological evolution of a wellconstrained,subaerial-subaqueous source to sink system:Wabush Lake[J].Sedimentology,2015,62(6):1636-1664.
    [34]Baxter A T,Aitchison J C,Ali J R,et al.Detrital chrome spinel evidence for a Neotethyan intra-oceanic island arc collision with India in the Paleocene[J].Journal of Asian Earth Sciences,2016,128:90-104.
    [35]Li C,Lv C F,Chen G J,et al.Source and sink characteristics of the continental slope-parallel Central Canyon in the Qiongdongnan Basin on the northern margin of the South China Sea[J].Journal of Asian Earth Sciences,2017,134:1-12.
    [36]徐长贵.陆相断陷盆地源—汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J].中国海上油气,2013,25(4):1-11,21.[Xu Changgui.Controlling sand principle of source-sink coupling in time and space in continental rift basins:basic idea,conceptual systems and controlling sand models[J].China Offshore Oil and Gas,2013,25(4):1-11,21.]
    [37]吴冬,朱筱敏,刘常妮,等.“源—汇”体系主导下的断陷湖盆陡坡带扇三角洲发育模式探讨:以苏丹Muglad盆地Fula凹陷为例[J].高校地质学报,2015,21(4):653-663.[Wu Dong,Zhu Xiaomin,Liu Changni,et al.Discussion on depositional models of fan deltas in steep slope belt of the rift basin under the guidance of source-to-sink system theory:A case study from the Fula sub-basin,Muglad Basin,Sudan[J].Geological Journal of China Universities,2015,21(4):653-663.]
    [38]王星星,朱筱敏,宋爽,等.渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段“源—汇”系统[J].古地理学报,2016,18(1):65-79.[Wang Xingxing,Zhu Xiaomin,Song Shuang,et al.“Source-to-sink”system of the Lower Member 3 of Paleogene Shahejie Formation in steep slope zone of western Chezhen sub-sag,Bohai Bay Basin[J].Journal of Palaeogeography,2016,18(1):65-79.]
    [39]李顺利,朱筱敏,李慧勇,等.源—汇系统要素定量表征及耦合模式:以沙垒田凸起与沙南凹陷沙河街组为例[J].中国海上油气,2017,29(4):39-50.[Li Shunli,Zhu Xiaomin,Li Huiyong,et al.Quantitative characterization of elements and coupling mode in source-to-sink system:A case study of the Shahejie Formation between the Shaleitian uplift and Shanan sag,Bohai Sea[J].China Offshore Oil and Gas,2017,29(4):39-50.]
    [40]徐伟,黄晓波,刘睿,等.辽东凹陷南洼斜坡型源—汇系统发育特征及控砂作用[J].中国海上油气,2017,29(4):76-84.[Xu Wei,Huang Xiaobo,Liu Rui,et al.Characteristics of slope source-to-sink system and its control on sand body in southern Liaodong sag,Bohai Sea[J].China Offshore Oil and Gas,2017,29(4):76-84.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700